4 research outputs found

    Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization

    Get PDF
    The hypocretin (Hcrt) system has been implicated in a wide range of physiological functions from sleep-wake regulation to cardiovascular, behavioral, metabolic, and thermoregulagtory control. These wide-ranging physiological effects have challenged the identification of a parsimonious function for Hcrt. A compelling hypothesis suggests that Hcrt plays a role in the integration of sleep-wake neurophysiology with energy metabolism. For example, Hcrt neurons promote waking and feeding, but are also sensors of energy balance. Loss of Hcrt function leads to an increase in REM sleep propensity, but a potential role for Hcrt linking energy balance with REM sleep expression has not been addressed. Here we examine a potential role for Hcrt and the lateral hypothalamus (LH) in state-dependent resource allocation as a means of optimizing resource utilization and, as a result, energy conservation. We review the energy allocation hypothesis of sleep and how state-dependent metabolic partitioning may contribute toward energy conservation, but with additional examination of how the loss of thermoregulatory function during REM sleep may impact resource optimization. Optimization of energy expenditures at the whole organism level necessitates a top-down network responsible for coordinating metabolic operations in a state-dependent manner across organ systems. In this context, we then specifically examine the potential role of the LH in regulating this output control, including the contribution from both Hcrt and melanin concentrating hormone (MCH) neurons among a diverse LH cell population. We propose that this hypothalamic integration system is responsible for global shifts in state-dependent resource allocations, ultimately promoting resource optimization and an energy conservation function of sleep-wake cycling

    Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization

    Get PDF
    The hypocretin (Hcrt) system has been implicated in a wide range of physiological functions from sleep-wake regulation to cardiovascular, behavioral, metabolic, and thermoregulagtory control. These wide-ranging physiological effects have challenged the identification of a parsimonious function for Hcrt. A compelling hypothesis suggests that Hcrt plays a role in the integration of sleep-wake neurophysiology with energy metabolism. For example, Hcrt neurons promote waking and feeding, but are also sensors of energy balance. Loss of Hcrt function leads to an increase in REM sleep propensity, but a potential role for Hcrt linking energy balance with REM sleep expression has not been addressed. Here we examine a potential role for Hcrt and the lateral hypothalamus (LH) in state-dependent resource allocation as a means of optimizing resource utilization and, as a result, energy conservation. We review the energy allocation hypothesis of sleep and how state-dependent metabolic partitioning may contribute toward energy conservation, but with additional examination of how the loss of thermoregulatory function during REM sleep may impact resource optimization. Optimization of energy expenditures at the whole organism level necessitates a top-down network responsible for coordinating metabolic operations in a state-dependent manner across organ systems. In this context, we then specifically examine the potential role of the LH in regulating this output control, including the contribution from both Hcrt and melanin concentrating hormone (MCH) neurons among a diverse LH cell population. We propose that this hypothalamic integration system is responsible for global shifts in state-dependent resource allocations, ultimately promoting resource optimization and an energy conservation function of sleep-wake cycling

    Incidence of haematological malignancies in Kosovo-A post "uranium war" concern.

    No full text
    BACKGROUND:During the Kosovo War (1998-99) approximately 31,000 rounds with Depleted Uranium (DU) were fired on 85 targets in Kosovo. The number of haematological malignancies (HM) increased after the war and the concern was the use of DU during the war. The aim of this study was to analyse the incidence rates of HM in Kosovo throughout a 20-year that includes pre- and post- war period (1995-2015); and to examine if there is any association between the use of DU rounds and incidence rates of HM in different regions of Kosovo. METHODS:In this retrospective register-based study, 1,798 new patients diagnosed with leukaemia, Hodgkin lymphoma, non-Hodgkin lymphoma and Multiple myeloma were analysed over a 20 year period. Incidence rates were calculated focusing on specific time periods, regions and age-groups. In addition, the correlation between the use of DU in different regions and their incidence of HM was analysed. RESULTS:The average annual crude rate of all HM in Kosovo was 5.02 cases per 100,000 persons. Incidence rates of HM in first post-war period (2000-2003) increased by 0.37 cases/100,000 persons (9.51%) compared to the pre-war period (1995-1998) whereas in the last post-war period (2012-2015), incidence of HM increased by 3.19/100,000 persons (82%). Gjakova and Peja, the first and third most exposed regions to DU ordnance ranked first and second in difference in HM. Prishtina, Gjilan and Ferizaj, regions with the least number of rounds/km2, were characterized by a decline of incidence rates. CONCLUSIONS:After the war, the increase in incidence rate of HM was higher in two regions with most DU rounds/km2 expended Despite these findings, this study warrants further investigation and does not lead us to a conclusive finding on the existence of a causal relationship between the use of DU during the war and the rise in incidence of HM in Kosovo

    Dynamic REM Sleep Modulation by Ambient Temperature and the Critical Role of the Melanin-Concentrating Hormone System.

    No full text
    Ambient temperature (Ta) warming toward the high end of the thermoneutral zone (TNZ) preferentially increases rapid eye movement (REM) sleep over non-REM (NREM) sleep across species. The control and function of this temperature-induced REM sleep expression have remained unknown. Melanin-concentrating hormone (MCH) neurons play an important role in REM sleep control. We hypothesize that the MCH system may modulate REM sleep as a function of Ta. Here, we show that wild-type (WT) mice dynamically increased REM sleep durations specifically during warm Ta pulsing within the TNZ, compared to both the TNZ cool and baseline constant Ta conditions, without significantly affecting either wake or NREM sleep durations. However, genetically engineered MCH receptor-1 knockout (MCHR1-KO) mice showed no significant changes in REM sleep as a function of Ta, even with increased sleep pressure following a 4-h sleep deprivation. Using MCH-cre mice transduced with channelrhodopsin, we then optogenetically activated MCH neurons time locked with Ta warming, showing an increase in REM sleep expression beyond what Ta warming in yellow fluorescent protein (YFP) control mice achieved. Finally, in mice transduced with archaerhodopsin-T, semi-chronic optogenetic MCH neuronal silencing during Ta warming completely blocked the increase in REM sleep seen in YFP controls. These data demonstrate a previously unknown role for the MCH system in the dynamic output expression of REM sleep during Ta manipulation. These findings are consistent with the energy allocation hypothesis of sleep function, suggesting that endotherms have evolved neural circuits to opportunistically express REM sleep when the need for thermoregulatory defense is minimized
    corecore