856 research outputs found
Comment on ``Precision measurement of the Casimir-Lifshitz force in a fluid''
Recently J.N. Munday and F. Capasso [Phys. Rev. A {\bf 75}, 060102(R) (2007);
arXiv:0705.3793] claimed that they have performed a precision measurement of
the Casimir force between a sphere and a plate coated with Au, both immersed in
ethanol. The measurement results were claimed to be consistent with the
Lifshitz theory. We demonstrate that the calculation of the Casimir force
between the smooth bodies following the authors prescription has a discrepancy
up to 25% with respect to authors result. We show also that the attractive
electrostatic force only due to the surface potential differences was
underestimated by a factor of 590 and the charge double layer interaction was
not taken into account. All this leads to the conclusion that the results of
this experiment are in fact uncertain.Comment: 5 pages, 1 figure, submitted to Physical Review A; corrections are
made in accordance to referee's suggestion
Energy levels and decoherence properties of single electron and nuclear spins in a defect center in diamond
The coherent behavior of the single electron and single nuclear spins of a
defect center in diamond and a 13C nucleus in its vicinity, respectively, are
investigated. The energy levels associated with the hyperfine coupling of the
electron spin of the defect center to the 13C nuclear spin are analyzed.
Methods of magnetic resonance together with optical readout of single defect
centers have been applied in order to observe the coherent dynamics of the
electron and nuclear spins. Long coherence times, in the order of microseconds
for electron spins and tens of microseconds for nuclear spins, recommend the
studied system as a good experimental approach for implementing a 2-qubit gate.Comment: 4 pages, 4 figure
Noise performance of magneto-inductive cables
Magneto-inductive (MI) waveguides are metamaterial structures based on periodic arrangements of inductively coupled resonant magnetic elements. They are of interest for power transfer, communications and sensing, and can be realised in a flexible cable format. Signal-to-noise ratio is extremely important in applications involving signals. Here, we present the first experimental measurements of the noise performance of metamaterial cables. We focus on an application involving radiofrequency signal transmission in internal magnetic resonance imaging (MRI), where the subdivision of the metamaterial cable provides intrinsic patient safety. We consider MI cables suitable for use at 300 MHz during 1H MRI at 7 T, and find noise figures of 2.3–2.8 dB/m, together with losses of 3.0–3.9 dB/m, in good agreement with model calculations. These values are high compared to conventional cables, but become acceptable when (as here) the environment precludes the use of continuous conductors. To understand this behaviour, we present arguments for the fundamental performance limitations of these cables
Anisotropy of Magnetic Interactions in the Spin-Ladder Compound (CHN)CuBr
Magnetic excitations in the spin-ladder material (CHN)CuBr
[BPCB] are probed by high-resolution multi-frequency electron spin resonance
(ESR) spectroscopy. Our experiments provide a direct evidence for a biaxial
anisotropy ( of the dominant exchange interaction), that is in
contrast to a fully isotropic spin-ladder model employed for this system
previously. It is argued that this anisotropy in BPCB is caused by spin-orbit
coupling, which appears to be important for describing magnetic properties of
this compound. The zero-field zone-center gap in the excitation spectrum of
BPCB, K, is detected directly. Furthermore, an ESR
signature of the inter-ladder exchange interactions is obtained. The detailed
characterization of the anisotropy in BPCB completes the determination of the
full spin hamiltonian of this exceptional spin-ladder material and shows ways
to study anisotropy effects in spin ladders.Comment: 6 pages, 6 figure
Equation of the field lines of an axisymmetric multipole with a source surface
Optical spectropolarimeters can be used to produce maps of the surface magnetic fields of stars and hence to determine how stellar magnetic fields vary with stellar mass, rotation rate, and evolutionary stage. In particular, we now can map the surface magnetic fields of forming solar-like stars, which are still contracting under gravity and are surrounded by a disk of gas and dust. Their large scale magnetic fields are almost dipolar on some stars, and there is evidence for many higher order multipole field components on other stars. The availability of new data has renewed interest in incorporating multipolar magnetic fields into models of stellar magnetospheres. I describe the basic properties of axial multipoles of arbitrary degree ℓ and derive the equation of the field lines in spherical coordinates. The spherical magnetic field components that describe the global stellar field topology are obtained analytically assuming that currents can be neglected in the region exterior to the star, and interior to some fixed spherical equipotential surface. The field components follow from the solution of Laplace’s equation for the magnetostatic potential
1/z-renormalization of the mean-field behavior of the dipole-coupled singlet-singlet system HoF_3
The two main characteristics of the holmium ions in HoF_3 are that their
local electronic properties are dominated by two singlet states lying well
below the remaining 4f-levels, and that the classical dipole-coupling is an
order of magnitude larger than any other two-ion interactions between the
Ho-moments. This combination makes the system particularly suitable for testing
refinements of the mean-field theory. There are four Ho-ions per unit cell and
the hyperfine coupled electronic and nuclear moments on the Ho-ions order in a
ferrimagnetic structure at T_C=0.53 K. The corrections to the mean-field
behavior of holmium triflouride, both in the paramagnetic and ferrimagnetic
phase, have been calculated to first order in the high-density 1/z-expansion.
The effective medium theory, which includes the effects of the single-site
fluctuations, leads to a substantially improved description of the magnetic
properties of HoF_3, in comparison with that based on the mean-field
approximation.Comment: 26pp, plain-TeX, JJ
Exchange Rates and Trade Balance Adjustment: A Multi-Country Empirical Analysis
This study assesses the response of the trade balance to exchange rate fluctuations across a large number of countries. Fixed-effects regressions are estimated for three country groups (industrial, developing and emerging markets) on annual data for 87 countries from 1994 to 2010. The trade balance improves significantly after a real depreciation, and to a similar degree, in the long run for all countries, but the adjustment is significantly slower for industrial countries. Emerging markets and developing countries display relatively fast adjustment. Disaggregation into exports and imports shows that the delayed adjustment in industrial countries is almost entirely on the export side. The rate of adjustment in emerging markets is slowing over time, consistent with their eventual graduation to high-income status. The ratio of trade to GDP is also highly sensitive to the real effective exchange rate, with a real depreciation of 10 % raising the trade/GDP ratio across the sample by approximately 4 %. This result, which presumably reflects movements in the prices of tradables relative to non-tradables, raises questions about the widespread use of the trade/GDP ratio as a trade policy indicator, without adjustment for real exchange rate effects
Thermodynamical Study on the Heavy-Fermion Superconductor PrOs4Sb12: Evidence for Field-Induced Phase Transition
We report measurements of low-temperature specific heat on the 4f^2-based
heavy-fermion superconductor PrOs4Sb12. In magnetic fields above 4.5 T in the
normal state, distinct anomalies are found which demonstrate the existence of a
field-induced ordered phase (FIOP). The Pr nuclear specific heat indicates an
enhancement of the 4f magnetic moment in the FIOP. Utilizing a Maxwell
relation, we conclude that anomalous entropy, which is expected for a
single-site quadrupole Kondo model, is not concealed below 0.16 K in zero
field. We also discuss two possible interpretations of the Schottky-like
anomaly at ~3 K, i.e., a crystalline-field excitation or a hybridization gap
formation.Comment: 5 pages with 5 figures, a note with two references added in proo
Test for interlayer coherence in a quasi-two-dimensional superconductor
Peaks in the magnetoresistivity of the layered superconductor
-(BEDT-TTF)Cu(NCS), measured in fields T applied
within the layers, show that the Fermi surface is extended in the interlayer
direction and enable the interlayer transfer integral (
meV) to be deduced. However, the quasiparticle scattering rate is
such that , implying that
-(BEDT-TTF)Cu(NCS) meets the criterion used to identify
interlayer incoherence. The applicability of this criterion to anisotropic
materials is thus shown to be questionable.Comment: 5 pages, 4 figure
A New Heavy-Fermion Superconductor CeIrIn5: Relative of the Cuprates?
CeIrIn5 is a member of a new family of heavy-fermion compounds and has a
Sommerfeld specific heat coefficient of 720 mJ/mol-K2. It exhibits a bulk,
thermodynamic transition to a superconducting state at Tc=0.40 K, below which
the specific heat decreases as T2 to a small residual T-linear value.
Surprisingly, the electrical resistivity drops below instrumental resolution at
a much higher temperature T0=1.2 K. These behaviors are highly reproducible and
field-dependent studies indicate that T0 and Tc arise from the same underlying
electronic structure. The layered crystal structure of CeIrIn5 suggests a
possible analogy to the cuprates in which spin/charge pair correlations develop
well above Tc
- …