42 research outputs found

    Component Interactions and Electron Transfer in Toluene/o-Xylene Monooxygenase

    Get PDF
    The multicomponent protein toluene/o-xylene monooxygenase (ToMO) activates molecular oxygen to oxidize aromatic hydrocarbons. Prior to dioxygen activation, two electrons are injected into each of two diiron(III) units of the hydroxylase, a process that involves three redox active proteins: the ToMO hydroxylase (ToMOH), Rieske protein (ToMOC), and an NADH oxidoreductase (ToMOF). In addition to these three proteins, a small regulatory protein is essential for catalysis (ToMOD). Through steady state and pre-steady state kinetics studies, we show that ToMOD attenuates electron transfer from ToMOC to ToMOH in a concentration-dependent manner. At substoichiometric concentrations, ToMOD increases the rate of turnover, which we interpret to be a consequence of opening a pathway for oxygen transport to the catalytic diiron center in ToMOH. Excess ToMOD inhibits steady state catalysis in a manner that depends on ToMOC concentration. Through rapid kinetic assays, we demonstrate that ToMOD attenuates formation of the ToMOC–ToMOH complex. These data, coupled with protein docking studies, support a competitive model in which ToMOD and ToMOC compete for the same binding site on the hydroxylase. These results are discussed in the context of other studies of additional proteins in the superfamily of bacterial multicomponent monooxygenases.National Institute of General Medical Sciences (U.S.) (5-R01-GM032134)United States. National Institutes of Health (T32GM008334

    Temperature dependence of delayed ehlorophyll fluorescence in intact leaves of higher plants. A rapid method for detecting the phase transition of thylakoid membrane lipids

    No full text
    The temperature dependence of the yield of in vivo prompt and delayed chiorophyll fluorescence was investigated in maize and barley leaves. In the chilling-sensitive maize, delayed fluorescence at steady-state level showed a maximum near the temperature at which thylakoid membrane lipids undergo a phase transition as revealed by differential scanning calorimetry measurements. In the chilling-resistant barley, no phase transition was detected above 0°C and the delayed light emission varied in a monotonic fashion. It was shown that measurements of delayed luminescence intensity in vivo can provide a rapid and sensitive method for detecting the phase change of membrane lipids in intact leaves of chilling-sensitive plant species such as tomato, cotton, cucumber, castor bean or avocado. In contrast, the use of steady-state prompt chlorophyll fluorescence as an indicator of membrane fluidity change was not successful. © 1983 Martinus Nijhoff/Dr W. Junk Publishers.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore