25 research outputs found
Price Leadership and Volatility Linkages between Oil and Renewable Energy Firms during the COVID-19 Pandemic
The COVID-19 pandemic is having a strong influence in all areas of society, like wealth, economy, travel, lifestyle habits, and, amongst many others, financial and energy markets. The influence in standard energies, like crude oil, and renewable energies markets has been twofold: from one side, the predictability of volatility has strongly decreased; secondly, the linkages of the price time series have been modified. In this paper, by using DCC-GARCH and Price Leadership Share methodology, we can investigate the changes in the influences between standard energies and renewable energies markets by analyzing one-minute time series of West Texas Intermediate crude oil futures contract (WTI), the Brent crude oil futures contract (BRENT), the STOXX Europe 600 oil & gas index (SXEV), and the European renewable energy index (ERIX). Our results confirm volatility spillover between the time series. However, when assessing the accuracy of the predictability of the DCC-GARCH model, the results show that the model fails its prediction in the period of higher instability. Besides, we found that price leadership has been strongly influenced by the virus spreading stages. These results have been obtained by dividing the period between September 2019 and January 2021 into 6 subperiods according to the pandemic stages
Nonstandard Errors
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty-nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants
Non-Standard Errors
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants
Markov Chain Modelling in Finance: Stock Valuation and Price Discovery
In this thesis we present three financial applications of Markov chain models based on three separate papers. The focus is about two important topics in finance, namely stock valuation and price discovery
Weighted-indexed semi-Markov model: calibration and application to financial modeling
Abstract We address the calibration issues of the weighted-indexed semi-Markov chain (WISMC) model applied to high-frequency financial data. Specifically, we propose to automate the discretization of the price returns and the volatility index by using four different approaches, two based on statistical quantities, namely, the quantile and sigma discretization, and two derived by the application of two popular machine learning algorithms, namely the k-means and Gaussian mixture model (GMM). Moreover, by comparing the Bayesian information criterion (BIC) scores, the GMM approach allows for the selection of the number of states of returns and index. An application to Bitcoin prices at 1-min and 1-s intervals shows the validity and usefulness of the proposed discretization approaches. In particular, GMM discretization is well suited for high-frequency returns, whereas the quantile approach works better for low-frequency intervals. Finally, by comparing the results of the Monte Carlo simulation, we show that the WISMC model, applied with the proposed discretization, can reproduce the long-range serial correlation of the squared returns, which is typical of the financial markets and, in particular, the cryptocurrency market
A Multivariate High-Order Markov Model for the Income Estimation of a Wind Farm
The energy produced by a wind farm in a given location and its associated income depends both on the wind characteristics in that location—i.e., speed and direction—and the dynamics of the electricity spot price. Because of the evidence of cross-correlations between wind speed, direction and price series and their lagged series, we aim to assess the income of a hypothetical wind farm located in central Italy when all interactions are considered. To model these cross and auto-correlations efficiently, we apply a high-order multivariate Markov model which includes dependencies from each time series and from a certain level of past values. Besides this, we used the Raftery Mixture Transition Distribution model (MTD) to reduce the number of parameters to get a more parsimonious model. Using data from the MERRA-2 project and from the electricity market in Italy, we estimate the model parameters and validate them through a Monte Carlo simulation. The results show that the simulated income faithfully reproduces the empirical income and that the multivariate model also closely reproduces the cross-correlations between the variables. Therefore, the model can be used to predict the income generated by a wind farm