7 research outputs found

    Stochastic stability versus localization in chaotic dynamical systems

    Full text link
    We prove stochastic stability of chaotic maps for a general class of Markov random perturbations (including singular ones) satisfying some kind of mixing conditions. One of the consequences of this statement is the proof of Ulam's conjecture about the approximation of the dynamics of a chaotic system by a finite state Markov chain. Conditions under which the localization phenomenon (i.e. stabilization of singular invariant measures) takes place are also considered. Our main tools are the so called bounded variation approach combined with the ergodic theorem of Ionescu-Tulcea and Marinescu, and a random walk argument that we apply to prove the absence of ``traps'' under the action of random perturbations.Comment: 27 pages, LaTe

    Multicomponent dynamical systems: SRB measures and phase transitions

    Full text link
    We discuss a notion of phase transitions in multicomponent systems and clarify relations between deterministic chaotic and stochastic models of this type of systems. Connections between various definitions of SRB measures are considered as well.Comment: 13 pages, LaTeX 2

    Hierarchy of piecewise non-linear maps with non-ergodicity behavior

    Full text link
    We study the dynamics of hierarchy of piecewise maps generated by one-parameter families of trigonometric chaotic maps and one-parameter families of elliptic chaotic maps of cn\mathbf{cn} and sn\mathbf{sn} types, in detail. We calculate the Lyapunov exponent and Kolmogorov-Sinai entropy of the these maps with respect to control parameter. Non-ergodicity of these piecewise maps is proven analytically and investigated numerically . The invariant measure of these maps which are not equal to one or zero, appears to be characteristic of non-ergodicity behavior. A quantity of interest is the Kolmogorov-Sinai entropy, where for these maps are smaller than the sum of positive Lyapunov exponents and it confirms the non-ergodicity of the maps.Comment: 18 pages, 8 figure

    Phase transition and correlation decay in Coupled Map Lattices

    Full text link
    For a Coupled Map Lattice with a specific strong coupling emulating Stavskaya's probabilistic cellular automata, we prove the existence of a phase transition using a Peierls argument, and exponential convergence to the invariant measures for a wide class of initial states using a technique of decoupling originally developed for weak coupling. This implies the exponential decay, in space and in time, of the correlation functions of the invariant measures

    Dynamical Chaos

    No full text
    corecore