113 research outputs found

    ROR2 blockade as a therapy for osteoarthritis

    Get PDF
    Osteoarthritis is characterized by the loss of the articular cartilage, bone remodeling, pain, and disability. No pharmacological intervention can currently halt progression of osteoarthritis. Here, we show that blocking receptor tyrosine kinase–like orphan receptor 2 (ROR2) improves cartilage integrity and pain in osteoarthritis models by inhibiting yes-associated protein (YAP) signaling. ROR2 was up-regulated in the cartilage in response to inflammatory cytokines and mechanical stress. The main ligand for ROR2, WNT5A, and the targets YAP and connective tissue growth factor were up-regulated in osteoarthritis in humans. In vitro, ROR2 overexpression inhibited chondrocytic differentiation. Conversely, ROR2 blockade triggered chondrogenic differentiation of C3H10T1/2 cells and suppressed the expression of the cartilage-degrading enzymes a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)–4 and ADAMTS-5. The chondrogenic effect of ROR2 blockade in the cartilage was independent of WNT signaling and was mediated by down-regulation of YAP signaling. ROR2 signaling induced G protein and Rho-dependent nuclear accumulation of YAP, and YAP inhibition was required but not sufficient for ROR2 blockade–induced chondrogenesis. ROR2 silencing protected mice from instability-induced osteoarthritis with improved structural outcomes, sustained pain relief, and without apparent side effects or organ toxicity. Last, ROR2 silencing in human articular chondrocytes transplanted in nude mice led to the formation of cartilage organoids with more and better differentiated extracellular matrix, suggesting that the anabolic effect of ROR2 blockade is conserved in humans. Thus, ROR2 blockade is efficacious and well tolerated in preclinical animal models of osteoarthritis

    Relationship between radiographic changes and symptoms or physical examination findings in subjects with symptomatic medial knee osteoarthritis: a three-year prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although osteoarthritis (OA) of the knee joints is the most common and debilitating joint disease in developed countries, the factors that determine the severity of symptoms are not yet understood well. Subjects with symptomatic medial knee OA were followed up prospectively to explore the relationship between radiographic changes and symptoms or physical examination findings.</p> <p>Methods</p> <p>One-hundred six OA knees in 68 subjects (mean age 71.1 years; 85% women) were followed up at 6-month intervals over 36 months. At each visit, knee radiographs were obtained, symptoms were assessed by a validated questionnaire, and the result of physical examination was recorded systematically using a specific chart. Correlations between the change of radiographs and clinical data were investigated in a longitudinal manner.</p> <p>Results</p> <p>During the study period, the narrowing of joint space width (JSW) was observed in 34 joints (32%). Although those knees were clinically or radiographically indistinguishable at baseline from those without JSW narrowing, differences became apparent at later visits during the follow-up. The subjects with knees that underwent JSW narrowing had severer symptoms, and the symptoms tended to be worse for those with higher rates of narrowing. A significant correlation was not found between the severity of symptoms and the growth of osteophytes. For the knees that did not undergo radiographic progression, the range of motion improved during the follow-up period, possibly due to the reduction of knee pain. Such improvement was not observed with the knees that underwent JSW narrowing or osteophyte growth.</p> <p>Conclusion</p> <p>The result of this study indicates that the symptoms of knee OA patients tend to be worse when JSW narrowing is underway. This finding may explain, at least partly, a known dissociation between the radiographic stage of OA and the severity of symptoms.</p

    Analysis of osteoarthritis in a mouse model of the progeroid human DNA repair syndrome trichothiodystrophy

    Get PDF
    The increasing average age in developed societies is paralleled by an increase in the prevalence of many age-related diseases such as osteoarthritis (OA), which is characterized by deformation of the joint due to cartilage damage and increased turnover of subchondral bone. Consequently, deficiency in DNA repair, often associated with premature aging, may lead to increased pathology of these two tissues. To examine this possibility, we analyzed the bone and cartilage phenotype of male and female knee joints derived from 52- to 104-week-old WT C57Bl/6 and trichothiodystrophy (TTD) mice, who carry a defect in the nucleotide excision repair pathway and display many features of premature aging. Using micro-CT, we found bone loss in all groups of 104-week-old compared to 52-week-old mice. Cartilage damage was mild to moderate in all mice. Surprisingly, female TTD mice had less cartilage damage, proteoglycan depletion, and osteophytosis compared to WT controls. OA severity in males did not significantly differ between genotypes, although TTD males had less osteophytosis. These results indicate that in premature aging TTD mice age-related changes in cartilage were not more severe compared to WT mice, in striking contrast with bone and many other tissues. This segmental aging character may be explained by a difference in vasculature and thereby oxygen load in cartilage and bone. Alternatively, a difference in impact of an anti-aging response, previously found to be triggered by accumulation of DNA damage, might help explain why female mice were protected from cartilage damage. These findings underline the exceptional segmental nature of progeroid conditions and provide an explanation for pro- and anti-aging features occurring in the same individual

    Protocol of the Healthy Brain Study: An accessible resource for understanding the human brain and how it dynamically and individually operates in its bio-social context

    Get PDF
    The endeavor to understand the human brain has seen more progress in the last few decades than in the previous two millennia. Still, our understanding of how the human brain relates to behavior in the real world and how this link is modulated by biological, social, and environmental factors is limited. To address this, we designed the Healthy Brain Study (HBS), an interdisciplinary, longitudinal, cohort study based on multidimensional, dynamic assessments in both the laboratory and the real world. Here, we describe the rationale and design of the currently ongoing HBS. The HBS is examining a population-based sample of 1,000 healthy participants (age 30-39) who are thoroughly studied across an entire year. Data are collected through cognitive, affective, behavioral, and physiological testing, neuroimaging, bio-sampling, questionnaires, ecological momentary assessment, and real-world assessments using wearable devices. These data will become an accessible resource for the scientific community enabling the next step in understanding the human brain and how it dynamically and individually operates in its bio-social context. An access procedure to the collected data and bio-samples is in place and published on https://www.healthybrainstudy.nl/en/data-and-methods. https://www.trialregister.nl/trial/795

    Does transcranial direct current stimulation to prefrontal cortex affect mood and emotional memory retrieval in healthy individuals?

    Get PDF
    Studies using transcranial direct current stimulation (tDCS) of prefrontal cortex to improve symptoms of depression have had mixed results. We examined whether using tDCS to change the balance of activity between left and right dorsolateral prefrontal cortex (DLPFC) can alter mood and memory retrieval of emotional material in healthy volunteers. Participants memorised emotional images, then tDCS was applied bilaterally to DLPFC while they performed a stimulus-response compatibility task. Participants were then presented with a set of images for memory retrieval. Questionnaires to examine mood and motivational state were administered at the beginning and end of each session. Exploratory data analyses showed that the polarity of tDCS to DLPFC influenced performance on a stimulus-response compatibility task and this effect was dependent on participants' prior motivational state. However, tDCS polarity had no effect on the speed or accuracy of memory retrieval of emotional images and did not influence positive or negative affect. These findings suggest that the balance of activity between left and right DLPFC does not play a critical role in the mood state of healthy individuals. We suggest that the efficacy of prefrontal tDCS depends on the initial activation state of neurons and future work should take this into account. © 2014 Morgan et al
    • 

    corecore