3,651 research outputs found

    Localization of Negative Energy and the Bekenstein Bound

    Get PDF
    A simple argument shows that negative energy cannot be isolated far away from positive energy in a conformal field theory and strongly constrains its possible dispersal. This is also required by consistency with the Bekenstein bound written in terms of the positivity of relative entropy. We prove a new form of the Bekenstein bound based on the monotonicity of the relative entropy, involving a "free" entropy enclosed in a region which is highly insensitive to space-time entanglement, and show that it further improves the negative energy localization bound.Comment: 5 pages, 1 figur

    Relative Entropy and Holography

    Get PDF
    Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH\Delta S=\Delta H for the first order variation of the entanglement entropy ΔS\Delta S and the expectation value of the \modu Hamiltonian ΔH\Delta H. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH\Delta S=\Delta H for vacuum state tomography and obtain modified versions of the Bekenstein bound.Comment: 75 pages, 3 figures, added reference

    Classical paths in systems of fermions

    Full text link
    We implement in systems of fermions the formalism of pseudoclassical paths that we recently developed for systems of bosons and show that quantum states of fermionic fields can be described, in the Heisenberg picture, as linear combinations of randomly distributed paths that do not interfere between themselves and obey classical Dirac equations. Every physical observable is assigned a time-dependent value on each path in a way that respects the anticommutative algebra between quantum operators and we observe that these values on paths do not necessarily satisfy the usual algebraic relations between classical observables. We use these pseudoclassical paths to define the dynamics of quantum fluctuations in systems of fermions and show that, as we found for systems of bosons, the dynamics of fluctuations of a wide class of observables that we call "collective" observables can be approximately described in terms of classical stochastic concepts. Finally, we apply this formalism to describe the dynamics of local fluctuations of globally conserved fermion numbers.Comment: to appear in Pys. Rev.

    Stationary states of a spherical Minority Game with ergodicity breaking

    Full text link
    Using generating functional and replica techniques, respectively, we study the dynamics and statics of a spherical Minority Game (MG), which in contrast with a spherical MG previously presented in J.Phys A: Math. Gen. 36 11159 (2003) displays a phase with broken ergodicity and dependence of the macroscopic stationary state on initial conditions. The model thus bears more similarity with the original MG. Still, all order parameters including the volatility can computed in the ergodic phases without making any approximations. We also study the effects of market impact correction on the phase diagram. Finally we discuss a continuous-time version of the model as well as the differences between on-line and batch update rules. Our analytical results are confirmed convincingly by comparison with numerical simulations. In an appendix we extend the analysis of the earlier spherical MG to a model with general time-step, and compare the dynamics and statics of the two spherical models.Comment: 26 pages, 8 figures; typo correcte

    New forms of masculinity in Western films: The end of the Marlboro Man?

    Get PDF
    Westerns are one of the most masculine and stereotypical of film genres. In a social and film context where gender equality is increasingly important, it is worth looking at the evolution of the genre in recent years. Especially because, as André Bazin said, the Western is “cinema par excellence” (1966) and its analysis allows a reflection on cinema itself. Taking the figure of the Marlboro Man as a prototype, this study carries out an analysis of three selected case studies: Brokeback Mountain, Jane Got a Gun and Godless, two films and a miniseries with main characters that do not follow heteronormative masculinity. Ang Lee’s work broke new ground not only in Westerns but also in industrial cinema by making homosexuality visible, while Gavin O’Connor’s showed the possibility of a woman playing the leading role in a classic Western. The miniseries produced by Netflix combines both by giving leading roles to female characters, some of them gay, while reflecting on homosexuality. It was noted that the portrayal of masculinity in Western films remains valid in all three cases, but it allows women and homosexuals to access leading roles, often by acquiring typically masculine attributes

    Human bony labyrinth is an indicator of population history and dispersal from Africa.

    Get PDF
    The dispersal of modern humans from Africa is now well documented with genetic data that track population history, as well as gene flow between populations. Phenetic skeletal data, such as cranial and pelvic morphologies, also exhibit a dispersal-from-Africa signal, which, however, tends to be blurred by the effects of local adaptation and in vivo phenotypic plasticity, and that is often deteriorated by postmortem damage to skeletal remains. These complexities raise the question of which skeletal structures most effectively track neutral population history. The cavity system of the inner ear (the so-called bony labyrinth) is a good candidate structure for such analyses. It is already fully formed by birth, which minimizes postnatal phenotypic plasticity, and it is generally well preserved in archaeological samples. Here we use morphometric data of the bony labyrinth to show that it is a surprisingly good marker of the global dispersal of modern humans from Africa. Labyrinthine morphology tracks genetic distances and geography in accordance with an isolation-by-distance model with dispersal from Africa. Our data further indicate that the neutral-like pattern of variation is compatible with stabilizing selection on labyrinth morphology. Given the increasingly important role of the petrous bone for ancient DNA recovery from archaeological specimens, we encourage researchers to acquire 3D morphological data of the inner ear structures before any invasive sampling. Such data will constitute an important archive of phenotypic variation in present and past populations, and will permit individual-based genotype-phenotype comparisons

    Charged and superconducting vortices in dense quark matter

    Full text link
    Quark matter at astrophysical densities may contain stable vortices due to the spontaneous breaking of hypercharge symmetry by kaon condensation. We argue that these vortices could be both charged and electrically superconducting. Current carrying loops (vortons) could be long lived and play a role in the magnetic and transport properties of this matter. We provide a scenario for vorton formation in protoneutron stars.Comment: Replaced with the published version. A typographical error in Eq. 2 is correcte

    Line Broadening in Field Metal-poor Red Giant and Red Horizontal Branch Stars

    Get PDF
    We report 349 radial velocities for 45 metal-poor field red giant and red horizontal branch stars. We have have identified one new spectroscopic binary, HD 4306, and one possible such system, HD 184711. We also report 57 radial velocities for 11 of the 91 stars reported on previously by Carney et al. (2003). As was found in the previous study, radial velocity "jitter" is present in many of the most luminous stars. Excluding stars showing spectroscopic binary orbital motion, all 7 of the red giants with M(V) <= -2.0 display jitter, as well as 3 of the 14 stars with -2.0 <= M(V) <= -1.4. We have also measured line broadening in all of the new spectra, using synthetic spectra as templates. The most luminous red giants show significant line broadening, as do many of the red horizontal branch stars, and we discuss briefly possible causes.Comment: To appear in the Astronomical Journa
    • …
    corecore