13,404 research outputs found
Two qubits entanglement dynamics in a symmetry-broken environment
We study the temporal evolution of entanglement pertaining to two qubits
interacting with a thermal bath. In particular we consider the simplest
nontrivial spin bath models where symmetry breaking occurs and treat them by
mean field approximation. We analytically find decoherence free entangled
states as well as entangled states with an exponential decay of the quantum
correlation at finite temperature.Comment: 10 pages, 2 figure
Detection of Gravitational Lensing in the Cosmic Microwave Background
Gravitational lensing of the cosmic microwave background (CMB), a
long-standing prediction of the standard cosmolgical model, is ultimately
expected to be an important source of cosmological information, but first
detection has not been achieved to date. We report a 3.4 sigma detection, by
applying quadratic estimator techniques to all sky maps from the Wilkinson
Microwave Anisotropy Probe (WMAP) satellite, and correlating the result with
radio galaxy counts from the NRAO VLA Sky Survey (NVSS). We present our
methodology including a detailed discussion of potential contaminants. Our
error estimates include systematic uncertainties from density gradients in
NVSS, beam effects in WMAP, Galactic microwave foregrounds, resolved and
unresolved CMB point sources, and the thermal Sunyaev-Zeldovich effect.Comment: 27 pages, 20 figure
Electrochemical Transduction on Self-Assembled Monolayers: Are Covalent Links Essential?
Electrochemical transduction without covalent links between redox and complexant units in a complexing self-assembled monolayer has been established. The results demonstrate that transduction depends on the crown ether/ferrocene ratio and appears to be tunable
Lyapunov exponents and transport in the Zhang model of Self-Organized Criticality
We discuss the role played by the Lyapunov exponents in the dynamics of
Zhang's model of Self-Organized Criticality. We show that a large part of the
spectrum (slowest modes) is associated with the energy transpor in the lattice.
In particular, we give bounds on the first negative Lyapunov exponent in terms
of the energy flux dissipated at the boundaries per unit of time. We then
establish an explicit formula for the transport modes that appear as diffusion
modes in a landscape where the metric is given by the density of active sites.
We use a finite size scaling ansatz for the Lyapunov spectrum and relate the
scaling exponent to the scaling of quantities like avalanche size, duration,
density of active sites, etc ...Comment: 33 pages, 6 figures, 1 table (to appear
Space capsule Patent
Manned space capsule configuration for orbital flight and atmospheric reentr
Radar cross calibration investigation TAMU radar polarimeter calibration measurements
A short pulse, 20 MHz bandwidth, three frequency radar polarimeter system (RPS) operates at center frequencies of 10.003 GHz, 4.75 GHz, and 1.6 GHz and utilizes dual polarized transmit and receive antennas for each frequency. The basic lay-out of the RPS is different from other truck mounted systems in that it uses a pulse compression IF section common to all three RF heads. Separate transmit and receive antennas are used to improve the cross-polarization isolation at each particular frequency. The receive is a digitally controlled gain modulated subsystem and is interfaced directly with a microprocesser computer for control and data manipulation. Antenna focusing distance, focusing each antenna pair, rf head stability, and polarization characteristics of RPS antennas are discussed. Platform and data acquisition procedures are described
Ga-NMR local susceptibility of the kagome-based magnet SrCr_9pGa_(12-9p)O_19. A high temperature study
We report a high- Ga-NMR study in the kagome-based antiferromagnetic
compound SrCrGaO (), and present a
refined mean-field analysis of the high T local NMR susceptibility of Cr
frustrated moments. We find that the intralayer kagome coupling is K,
and the interlayer coupling through non-kagome Cr moments is K. The ratio confirms the common belief that
the frustrated entity is a pyrochlore slab.Comment: 8 pages, 4 figures Conference paper: Highly Frustrated Magnetism
2000, Waterloo (Canada) Submitted to Canadian Journal of Physic
Recommended from our members
Cargo adaptors regulate stepping and force generation of mammalian dynein-dynactin.
Cytoplasmic dynein is an ATP-driven motor that transports intracellular cargos along microtubules. Dynein adopts an inactive conformation when not attached to a cargo, and motility is activated when dynein assembles with dynactin and a cargo adaptor. It was unclear how active dynein-dynactin complexes step along microtubules and transport cargos under tension. Using single-molecule imaging, we showed that dynein-dynactin advances by taking 8 to 32-nm steps toward the microtubule minus end with frequent sideways and backward steps. Multiple dyneins collectively bear a large amount of tension because the backward stepping rate of dynein is insensitive to load. Recruitment of two dyneins to dynactin increases the force generation and the likelihood of winning against kinesin in a tug-of-war but does not directly affect velocity. Instead, velocity is determined by cargo adaptors and tail-tail interactions between two closely packed dyneins. Our results show that cargo adaptors modulate dynein motility and force generation for a wide range of cellular functions
- …
