135 research outputs found
Erythrocyte ÎČ spectrin can be genetically targeted to protect mice from malaria
The malaria parasite hijacks host erythrocytes to shield itself from the immune system and proliferate. Red blood cell abnormalities can provide protection from malaria by impeding parasite invasion and growth within the cell or by compromising the ability of parasites to avoid host clearance. Here, we describe 2 N-ethyl-N-nitrosoureaâinduced mouse lines, SptbMRI26194 and SptbMRI53426, containing single-point mutations in the erythrocyte
membrane skeleton gene, b spectrin (Sptb), which exhibit microcytosis but retain a relatively normal ratio of erythrocyte surface area to volume and are highly resistant to rodent malaria. We propose the major factor responsible for malaria protection is the specific clearance of mutant erythrocytes, although an enhanced clearance of ninfected
mutant erythrocytes was also observed (ie, the bystander effect). Using an in vivo erythrocyte tracking assay, we established that this phenomenon occurs irrespective of host environment, precluding the involvement of nonerythrocytic cells in the resistance mechanism. Furthermore, we recapitulated this phenotype by disrupting the interaction between ankyrin-1 and b spectrin in vivo using CRISPR/Cas9 genome editing technology, thereby genetically validating a potential antimalarial target. This study sheds new light on
the role of b spectrin during Plasmodium infection and highlights how changes in the erythrocyte cytoskeleton can substantially influence malaria susceptibility with minimal
adverse consequences for the host.This work was supported by the National Health and Medical
Research Council (grants APP605524 , 4 90037 and 104 7082),
the Australian Research Council (grants DP12010061 and
FL150100106), the National Collaborative Research Infrastructure
Strategy of Australia and the education investment fund from the
Department of Innovation, Industry, Science and Research via
the Australian Phenomics Network, and the Japan Society for
the Promotion of Science Fellowship Program (grant S16706)
The Risk of Sympathetic Ophthalmia Associated with Open-Globe Injury Management Strategies:A Meta-analysis
Topic: Sympathetic ophthalmia (SO) is a sight-threatening granulomatous panuveitis caused by a sensitizing event. Primary enucleation or primary evisceration, versus primary repair, as a risk management strategy after open-globe injury (OGI) remains controversial.Clinical Relevance: This systematic review was conducted to report the incidence of SO after primary repair compared with that of after primary enucleation or primary evisceration. This enabled the reporting of an estimated number needed to treat.Methods: Five journal databases were searched. This review was registered with International Prospective Register of Systematic Reviews (identifier, CRD42021262616). Searches were carried out on June 29, 2021, and were updated on December 10, 2022. Prospective or retrospective studies that reported outcomes (including SO or lack of SO) in a patient population who underwent either primary repair and primary enucleation or primary evisceration were included. A systematic review and meta-analysis were carried out in accordance with Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Random effects modelling was used to estimate pooled SO rates and absolute risk reduction (ARR).Results: Eight studies reporting SO as an outcome were included in total. The included studies contained 7500 patients and 7635 OGIs. In total, 7620 OGIs met the criteria for inclusion in this analysis; SO developed in 21 patients with OGI. When all included studies were pooled, the estimated SO rate was 0.12% (95% confidence interval [CI], 0.00%â0.25%) after OGI. Of 779 patients who underwent primary enucleation or primary evisceration, no SO cases were reported, resulting in a pooled SO estimate of 0.05% (95% CI, 0.00%â0.21%). For primary repair, the pooled estimate of SO rate was 0.15% (95% CI, 0.00%â0.33%). The ARR using a random effects model was â0.0010 (in favour of eye removal; 95% CI, â0.0031 [in favor of eye removal] to 0.0011 [in favor of primary repair]). Grading of Recommendations, Assessment, Development, and Evaluations analysis highlighted a low certainty of evidence because the included studies were observational, and a risk of bias resulted from missing data.Discussion: Based on the available data, no evidence exists that primary enucleation or primary evisceration reduce the risk of secondary SO.Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article
Complement C1 Esterase Inhibitor Levels Linked to Infections and Contaminated Heparin-Associated Adverse Events
Activation of kinin-kallikrein and complement pathways by oversulfated-chondroitin-sulfate (OSCS) has been linked with recent heparin-associated adverse clinical events. Given the fact that the majority of patients who received contaminated heparin did not experience an adverse event, it is of particular importance to determine the circumstances that increase the risk of a clinical reaction. In this study, we demonstrated by both the addition and affinity depletion of C1inh from normal human plasma, that the level of C1inh in the plasma has a great impact on the OSCS-induced kallikrein activity and its kinetics. OSCS-induced kallikrein activity was dramatically increased after C1inh was depleted, while the addition of C1inh completely attenuated kallikrein activity. In addition, actual clinical infection can lead to increased C1inh levels. Plasma from patients with sepsis had higher average levels of functional C1inh and decreased OSCS-induced kallikrein activity. Lastly, descriptive data on adverse event reports suggest cases likely to be associated with contaminated heparin are inversely correlated with infection. Our data suggest that low C1inh levels can be a risk factor and high levels can be protective. The identification of risk factors for contact system-mediated adverse events may allow for patient screening and clinical development of prophylaxis and treatments
A Federated Database for Obesity Research:An IMI-SOPHIA Study
Obesity is considered by many as a lifestyle choice rather than a chronic progressive disease. The Innovative Medicines Initiative (IMI) SOPHIA (Stratification of Obesity Phenotypes to Optimize Future Obesity Therapy) project is part of a momentum shift aiming to provide better tools for the stratification of people with obesity according to disease risk and treatment response. One of the challenges to achieving these goals is that many clinical cohorts are siloed, limiting the potential of combined data for biomarker discovery. In SOPHIA, we have addressed this challenge by setting up a federated database building on open-source DataSHIELD technology. The database currently federates 16 cohorts that are accessible via a central gateway. The database is multi-modal, including research studies, clinical trials, and routine health data, and is accessed using the R statistical programming environment where statistical and machine learning analyses can be performed at a distance without any disclosure of patient-level data. We demonstrate the use of the database by providing a proof-of-concept analysis, performing a federated linear model of BMI and systolic blood pressure, pooling all data from 16 studies virtually without any analyst seeing individual patient-level data. This analysis provided similar point estimates compared to a meta-analysis of the 16 individual studies. Our approach provides a benchmark for reproducible, safe federated analyses across multiple study types provided by multiple stakeholders.</p
A Federated Database for Obesity Research:An IMI-SOPHIA Study
Obesity is considered by many as a lifestyle choice rather than a chronic progressive disease. The Innovative Medicines Initiative (IMI) SOPHIA (Stratification of Obesity Phenotypes to Optimize Future Obesity Therapy) project is part of a momentum shift aiming to provide better tools for the stratification of people with obesity according to disease risk and treatment response. One of the challenges to achieving these goals is that many clinical cohorts are siloed, limiting the potential of combined data for biomarker discovery. In SOPHIA, we have addressed this challenge by setting up a federated database building on open-source DataSHIELD technology. The database currently federates 16 cohorts that are accessible via a central gateway. The database is multi-modal, including research studies, clinical trials, and routine health data, and is accessed using the R statistical programming environment where statistical and machine learning analyses can be performed at a distance without any disclosure of patient-level data. We demonstrate the use of the database by providing a proof-of-concept analysis, performing a federated linear model of BMI and systolic blood pressure, pooling all data from 16 studies virtually without any analyst seeing individual patient-level data. This analysis provided similar point estimates compared to a meta-analysis of the 16 individual studies. Our approach provides a benchmark for reproducible, safe federated analyses across multiple study types provided by multiple stakeholders
A Federated Database for Obesity Research:An IMI-SOPHIA Study
Obesity is considered by many as a lifestyle choice rather than a chronic progressive disease. The Innovative Medicines Initiative (IMI) SOPHIA (Stratification of Obesity Phenotypes to Optimize Future Obesity Therapy) project is part of a momentum shift aiming to provide better tools for the stratification of people with obesity according to disease risk and treatment response. One of the challenges to achieving these goals is that many clinical cohorts are siloed, limiting the potential of combined data for biomarker discovery. In SOPHIA, we have addressed this challenge by setting up a federated database building on open-source DataSHIELD technology. The database currently federates 16 cohorts that are accessible via a central gateway. The database is multi-modal, including research studies, clinical trials, and routine health data, and is accessed using the R statistical programming environment where statistical and machine learning analyses can be performed at a distance without any disclosure of patient-level data. We demonstrate the use of the database by providing a proof-of-concept analysis, performing a federated linear model of BMI and systolic blood pressure, pooling all data from 16 studies virtually without any analyst seeing individual patient-level data. This analysis provided similar point estimates compared to a meta-analysis of the 16 individual studies. Our approach provides a benchmark for reproducible, safe federated analyses across multiple study types provided by multiple stakeholders.</p
Acquisition and Evolution of Plant PathogenesisâAssociated Gene Clusters and Candidate Determinants of Tissue-Specificity in Xanthomonas
is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. lineage. genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or in non-coding sequences, and/or differences outside the clusters, potentially among regulatory targets or secretory substrates
Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants
The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at
energies around 3~PeV. Sources which are capable of accelerating hadrons to
such energies are called hadronic PeVatrons. However, hadronic PeVatrons have
not yet been firmly identified within the Galaxy. Several source classes,
including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron
candidates. The potential to search for hadronic PeVatrons with the Cherenkov
Telescope Array (CTA) is assessed. The focus is on the usage of very high
energy -ray spectral signatures for the identification of PeVatrons.
Assuming that SNRs can accelerate CRs up to knee energies, the number of
Galactic SNRs which can be identified as PeVatrons with CTA is estimated within
a model for the evolution of SNRs. Additionally, the potential of a follow-up
observation strategy under moonlight conditions for PeVatron searches is
investigated. Statistical methods for the identification of PeVatrons are
introduced, and realistic Monte--Carlo simulations of the response of the CTA
observatory to the emission spectra from hadronic PeVatrons are performed.
Based on simulations of a simplified model for the evolution for SNRs, the
detection of a -ray signal from in average 9 Galactic PeVatron SNRs is
expected to result from the scan of the Galactic plane with CTA after 10 hours
of exposure. CTA is also shown to have excellent potential to confirm these
sources as PeVatrons in deep observations with hours of
exposure per source.Comment: 34 pages, 16 figures, Accepted for publication in Astroparticle
Physic
Safety, infectivity and immunogenicity of a genetically attenuated blood-stage malaria vaccine
Background
There is a clear need for novel approaches to malaria vaccine development. We aimed to develop a genetically attenuated blood-stage vaccine and test its safety, infectivity, and immunogenicity in healthy volunteers. Our approach was to target the gene encoding the knob-associated histidine-rich protein (KAHRP), which is responsible for the assembly of knob structures at the infected erythrocyte surface. Knobs are required for correct display of the polymorphic adhesion ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1), a key virulence determinant encoded by a repertoire of var genes.
Methods
The gene encoding KAHRP was deleted from P. falciparum 3D7 and a master cell bank was produced in accordance with Good Manufacturing Practice. Eight malaria naĂŻve males were intravenously inoculated (day 0) with 1800 (2 subjects), 1.8 Ăâ105 (2 subjects), or 3 Ăâ106 viable parasites (4 subjects). Parasitemia was measured using qPCR; immunogenicity was determined using standard assays. Parasites were rescued into culture for in vitro analyses (genome sequencing, cytoadhesion assays, scanning electron microscopy, var gene expression).
Results
None of the subjects who were administered with 1800 or 1.8 Ăâ105 parasites developed parasitemia; 3/4 subjects administered 3Ăâ106 parasites developed significant parasitemia, first detected on days 13, 18, and 22. One of these three subjects developed symptoms of malaria simultaneously with influenza B (day 17; 14,022 parasites/mL); one subject developed mild symptoms on day 28 (19,956 parasites/mL); and one subject remained asymptomatic up to day 35 (5046 parasites/mL). Parasitemia rapidly cleared with artemether/lumefantrine. Parasitemia induced a parasite-specific antibody and cell-mediated immune response. Parasites cultured ex vivo exhibited genotypic and phenotypic properties similar to inoculated parasites, although the var gene expression profile changed during growth in vivo.
Conclusions
This study represents the first clinical investigation of a genetically attenuated blood-stage human malaria vaccine. A P. falciparum 3D7 kahrpâ strain was tested in vivo and found to be immunogenic but can lead to patent parasitemia at high doses
- âŠ