4 research outputs found

    Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities

    Get PDF
    Grasslands provide multiple Ecosystem Services (ES) such as forage provision, carbon sequestration or habitat provision. Knowledge about the trade-offs between these ES is of great importance for grassland management. Yet, the outcome of different management strategies on ES provision is highly uncertain due to spatial variability. We aim to characterize the provision (level and spatial variability) of grassland ES under various management strategies. To do so, we combine empirical data for multiple ES with spatially explicit census data on land use intensities. We analyzed the variations of five ES (forage provision, climate regulation, pollination, biodiversity conservation and outdoor recreation) using data from biodiversity fieldwork, experimental plots for carbon as well as social network data from Flickr. These data were used to calculate the distribution of modelled individual and multiple ES values from different grassland management types in a Swiss case study region using spatial explicit information for 17,383 grassland parcels. Our results show that (1) management regime and intensity levels play an important role in ES provision but their impact depends on the ES. In general, extensive management, especially in pastures, favors all ES but forage provision, whereas intensive management favors only forage provision and outdoor recreation; (2) ES potential provision varies between parcels under the same management due to the influence of environmental drivers, related to topography and landscape structure; (3) there is a trade-offs between forage provision and other ES at the cantonal level but a synergy between forage provision and biodiversity conservation within the grassland categories, due to the negative impact of elevation on both ES. Information about multiple ES provision is key to support effective agri-environmental measures and information about the spatial variability can prevent uncertain outputs of decision-making processes

    A mutant fibrinogen that is unable to form fibrin can improve renal phenotype in mice with sickle cell anemia

    No full text
    Abstract Sickle cell anemia (SCA) causes nephropathy which may progress to kidney failure. To determine if soluble fibrinogen (FibAEK) can prevent kidney damage in mice with SCA, we performed bone marrow transplantation (BMT) of Berkeley sickle mice into wild‐type fibrinogen (FibWT), and FibAEK mice that bear a germ‐line mutation in fibrinogen Aα chain at thrombin cleavage site which prevents fibrin formation. We found improved albuminuria in SS FibAEK mice compared with SS FibWT mice at 12 months post‐BMT due to the reduced kidney fibrosis, ischemic lesions, and increased survival of podocytes in the glomeruli, but did not improve urine concentrating defect. Therefore, our study clarifies the distinct role of fibrinogen and fibrin in the renal pathology of SCA
    corecore