372 research outputs found

    Comparison of mortality with home hemodialysis and center hemodialysis: A national study

    Get PDF
    Comparison of mortality with home hemodialysis and center hemodialysis: A national study. We sought to determine whether lower mortality rates reported with hemodialysis (HD) at home compared to hemodialysis in dialysis centers (center HD) could be explained by patient selection. Data are from the United States Renal Data System (USRDS) Special Study Of Case Mix Severity, a random national sample of 4,892 patients who started renal replacement therapy in 1986 to 1987. Intent-to-treat analyses compared mortality between home HD (N =70) and center HD patients (N = 3,102) using the Cox proportional hazards model. Home HD patients were younger and had a lower frequency of comorbid conditions. The unadjusted relative risk (RR) of death for home HD patients compared to center HD was 0.37 (P < 0.001). The RR adjusted for age, sex, race and diabetes, was 44% lower in home HD patients (RR = 0.56, P = 0.02). When additionally adjusted for comorbid conditions, this RR increased marginally (RR = 0.58, P = 0.03). A different analysis using national USRDS data from 1986/7 and without comorbid adjustment showed patients with training for self care hemodialysis at home or in a center (N = 418) had a lower mortality risk (RR = 0.78, P = 0.001) than center HD patients (N = 43,122). Statistical adjustment for comorbid conditions in addition to age, sex, race, and diabetes explains only a small amount of the lower mortality with home HD

    Novel C-Terminal Hsp90 Inhibitor for Head and Neck Squamous Cell Cancer (HNSCC) with in vivo Efficacy and Improved Toxicity Profiles Compared with Standard Agents

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1245/s10434-011-1971-1.Background - Current therapies for HNSCC, especially platinum agents, are limited by their toxicities and drug resistance. This study evaluates a novel C-terminal Hsp90 inhibitor (CT-Hsp90-I) for efficacy and toxicity in vitro and in vivo in an orthotopic HNSCC model. Our hypothesis is that C-terminal inhibitors exhibit improved toxicity/efficacy profiles over standard therapies and may represent a novel group of anticancer agents. Methods - MDA-1986 HNSCC cells were treated with doses of 17-AAG or KU363 (a CT-Hsp90-I) and compared for antiproliferation by GLO-Titer and trypan blue exclusion and for apoptosis by PARP cleavage and caspase-3 inactivation by Western analysis. In vivo studies in Nu/Nu mice examined an orthotopic model of MDA-1986 cells followed by drug dosing intraperitoneally for a 21-day period (mg/kg/dose: cisplatin = 3.5, low-dose KU363 = 5, high-dose KU363 = 25, 17-AAG = 175). Tumor size, weight, and toxicity (body score) were measured 3×/week. Results - The IC50 levels for KU363 = 1.2–2 μM in MDA-1986. KU363 induces apoptosis at 1 μM with cleavage of PARP and inactivation of caspase-3 levels after 24 h. Client proteins Akt and Raf-1 were also downregulated at 1–3 μM of drug. In vivo, 100% of controls had progressive disease, while 100% of cisplatin animals showed some response, all with significant systemic toxicity. High-dose KU363 showed 88% of animals responding and low-dose KU363 showed 75% responding. KU363 animals showed significantly less toxicity (P < 0.01) than cisplatin or 17-AAG. Conclusion - This novel CT-Hsp90-I KU363 manifests potent anticancer activity against HNSCC, showing excellent in vivo efficacy and reduced toxicity compared with standard agents justifying future translational evaluation

    A novel C-terminal HSP90 inhibitor KU135 induces apoptosis and cell cycle arrest in melanoma cells

    Get PDF
    Heat shock protein 90 (Hsp90) is differentially expressed in tumor cells including melanoma and involved in proper folding, stabilization and regulation of cellular proteins. We investigated a novobiocin-derived Hsp90 C-terminal inhibitor, KU135, for anti-proliferative effects in melanoma cells. The results indicate that KU135 reduced cell viability and cell proliferation in melanoma cells and IC50 values for A735(DRO), M14(NPA), B16F10 and SKMEL28 cells were 0.82, 0.92, 1.33 and 1.30 M respectively. KU135 induced a more potent anti-proliferative effect in most melanoma cells versus N-terminal Hsp90 inhibitor 17AAG. KU135 induced apoptosis in melanoma cells, as indicated by annexin V/PI staining, reduction in the mitochondrial membrane potential, mitochondrial cytochrome C release and caspase 3 activation. KU135 reduced levels of Hsp90 client proteins Akt, BRAF, RAF-1, cyclin B and cdc25 proteins. Additionally, it reduced Hsp70, Hsp90 paralog, GRP94 and HSF1 levels. KU135 induced strong G2/M cell cycle arrest, associated with decreased expression of cdc25c, cyclin B and increased phosphorylation of cdc25c. These finding show that KU135 reduced cell survival, proliferation, and induces apoptosis in melanoma cells. We suggest that KU135 may be a potential candidate for cancer therapy against melanoma

    Indigenous family violence : an attempt to understand the problems and inform appropriate and effective responses to criminal justice system intervention

    Get PDF
    Whilst high levels of concern about the prevalence of family violence within Indigenous communities have long been expressed, progress in the development of evidence-based intervention programs for known perpetrators has been slow. This review of the literature aims to provide a resource for practitioners who work in this area, and a framework from within which culturally specific violence prevention programs can be developed and delivered. It is suggested that effective responses to Indigenous family violence need to be informed by culturally informed models of violence, and that significant work is needed to develop interventions that successfully manage the risk of perpetrators of family violence committing further offences.<br /

    Characterization of a novel novobiocin analogue as a putative Cterminal inhibitor of heat shock protein 90 in prostate cancer cells

    Get PDF
    PURPOSE: Hsp90 is important in the folding, maturation and stabilization of pro-tumorigenic client proteins and represents a viable drug target for the design of chemotherapies. Previously, we reported the development of novobiocin analogues designed to inhibit the C-terminal portion of Hsp90, which demonstrated the ability to decrease client protein expression. We now report the characterization of the novel novobiocin analogue, F-4, which demonstrates improved cytotoxicity in prostate cancer cell lines compared to the N-terminal inhibitor, 17-AAG. MATERIALS AND METHODS: LNCaP and PC-3 cells were treated with 17-AAG or F-4 in anti-proliferative, apoptosis, cell cycle and cytotoxicity assays. Western blot and prostate specific antigen (PSA) ELISAs were used to determine client protein degradation, induction of Hsp90 and to assess the functional status of the androgen receptor (AR) in response to F-4 treatment. Surface Plasmon Resonance (SPR) was also used to determine the binding properties of F-4 to Hsp90. RESULTS: F-4 demonstrated improved potency and efficacy compared to novobiocin in anti-proliferative assays and decreased expression of client proteins. PSA secretion was inhibited in a dose-dependent manner that paralleled a decrease in AR expression. The binding of F-4 to Hsp90 was determined to be saturable with a binding affinity (Kd) of 100 µM. In addition, superior efficacy was demonstrated by F-4 compared to 17-AAG in experiments measuring cytotoxicity and apoptosis. CONCLUSIONS: These data reveal distinct modes of action for N-terminal and C-terminal Hsp90 inhibitors, which may offer unique therapeutic benefits for the treatment of prostate cancer

    Stimulation of Heat Shock Protein 90 Chaperone Function Through Binding of a Novobiocin Analog KU-32

    Get PDF
    Heat shock protein 90 (Hsp90) is a eukaryotic chaperone responsible for the folding and functional activation of numerous client proteins, many of which are oncoproteins. Thus, Hsp90 inhibition has been intensely pursued, resulting in the development of many potential Hsp90 inhibitors, not all of which are well-characterized. Hsp90 inhibitors not only abrogate its chaperone functions, but also could help us gain insight into the structure-function relationship of this chaperone. Here, using biochemical and cell-based assays along with isothermal titration calorimetry, we investigate KU-32, a derivative of the Hsp90 inhibitor novobiocin (NB), for its ability to modulate Hsp90 chaperone function. Although NB and KU-32 differ only slightly in structure, we found that upon binding, they induce completely opposite conformational changes in Hsp90. We observed that NB and KU-32 both bind to the C-terminal domain of Hsp90, but surprisingly, KU-32 stimulated the chaperone functions of Hsp90 via allosteric modulation of its N-terminal domain, responsible for the chaperone\u27s ATPase activity. and studies indicated that upon KU-32 binding, Hsp90 undergoes global structural changes leading to the formation of a partially closed intermediate that selectively binds ATP and increases ATPase activity. We also report that KU-32 promotes HeLa cell survival and enhances the refolding of an Hsp90 substrate inside the cell. This discovery explains the effectiveness of KU-32 analogs in the management of neuropathies and may facilitate the design of molecules that promote cell survival by enhancing Hsp90 chaperone function and reducing the load of misfolded proteins in cells

    On the possibility of magneto-structural correlations: detailed studies of di-nickel carboxylate complexes

    Get PDF
    A series of water-bridged dinickel complexes of the general formula [Ni&lt;sub&gt;2&lt;/sub&gt;(ÎĽ&lt;sub&gt;2&lt;/sub&gt;-OH&lt;sub&gt;2&lt;/sub&gt;)(ÎĽ2- O&lt;sub&gt;2&lt;/sub&gt;C&lt;sup&gt;t&lt;/sup&gt;Bu)&lt;sub&gt;2&lt;/sub&gt;(O&lt;sub&gt;2&lt;/sub&gt;C&lt;sup&gt;t&lt;/sup&gt;Bu)2(L)(L0)] (L = HO&lt;sub&gt;2&lt;/sub&gt;C&lt;sup&gt;t&lt;/sup&gt;Bu, L0 = HO&lt;sub&gt;2&lt;/sub&gt;C&lt;sup&gt;t&lt;/sup&gt;Bu (1), pyridine (2), 3-methylpyridine (4); L = L0 = pyridine (3), 3-methylpyridine (5)) has been synthesized and structurally characterized by X-ray crystallography. The magnetic properties have been probed by magnetometry and EPR spectroscopy, and detailed measurements show that the axial zero-field splitting, D, of the nickel(ii) ions is on the same order as the isotropic exchange interaction, J, between the nickel sites. The isotropic exchange interaction can be related to the angle between the nickel centers and the bridging water molecule, while the magnitude of D can be related to the coordination sphere at the nickel sites

    “Janus” Calixarenes: Double-Sided Molecular Linkers for Facile, Multianchor Point, Multifunctional, Surface Modification

    Get PDF
    We herein report the synthesis of novel “Janus” calix[4]arenes bearing four “molecular tethering” functional groups on either the upper or lower rims of the calixarene. These enable facile multipoint covalent attachment to electrode surfaces with monolayer coverage. The other rim of the calixarenes bear either four azide or four ethynyl functional groups, which are easily modified by the copper(I)-catalyzed azide–alkyne cycloaddition reaction (CuAAC), either pre- or postsurface modification, enabling these conical, nanocavity reactor sites to be decorated with a wide range of substrates to impart desired chemical properties. Redox active species decorating the peripheral rim are shown to be electrically connected by the calixarene to the electrode surface in either “up” or “down” orientations of the calixarene

    High Proliferation Rate and a Compromised Spindle Assembly Checkpoint Confers Sensitivity to the MPS1 Inhibitor BOS172722 in Triple-Negative Breast Cancers

    Get PDF
    BOS172722 (CCT289346) is a highly potent, selective, and orally bioavailable inhibitor of spindle assembly checkpoint kinase MPS1. BOS172722 treatment alone induces significant sensitization to death, particularly in highly proliferative triple-negative breast cancer (TNBC) cell lines with compromised spindle assembly checkpoint activity. BOS172722 synergizes with paclitaxel to induce gross chromosomal segregation defects caused by MPS1 inhibitor-mediated abrogation of the mitotic delay induced by paclitaxel treatment. In in vivo pharmacodynamic experiments, BOS172722 potently inhibits the spindle assembly checkpoint induced by paclitaxel in human tumor xenograft models of TNBC, as measured by inhibition of the phosphorylation of histone H3 and the phosphorylation of the MPS1 substrate, KNL1. This mechanistic synergy results in significant in vivo efficacy, with robust tumor regressions observed for the combination of BOS172722 and paclitaxel versus either agent alone in long-term efficacy studies in multiple human tumor xenograft TNBC models, including a patient-derived xenograft and a systemic metastasis model. The current target indication for BOS172722 is TNBC, based on their high sensitivity to MPS1 inhibition, the well-defined clinical patient population with high unmet need, and the synergy observed with paclitaxel
    • …
    corecore