18 research outputs found

    Dynamic obstructions of the equine upper respiratory tract. Part 1: Observations during high-speed treadmill endoscopy of 600 Thoroughbred racehorses

    No full text
    Reasons for performing study and objective: To review the prevalence of single and complex forms of dynamic airway obstructions within a large group of Thoroughbred horses in training referred for investigation of poor performance. Methods: Video-endoscopic recordings of the upper respiratory tract made during a standardised treadmill exercise test of 600 Thoroughbred racehorses were reviewed and analysed in real time and slow motion to identify dynamic collapse by the tissues bordering onto the pharyngeal and laryngeal airways. Results: Dynamic collapse within the nasopharynx or larynx was confirmed in 471 of the 600 horses. Dorsal displacement of the soft palate (DDSP; 50%) and palatal instability (33%) were the disorders most frequently identified. It was concluded that deglutition is not a significant event in the triggering of DDSP. Complex forms of dynamic collapse were present in 30% of the horses with upper respiratory tract obstructions. A significant influence of age on the prevalence of DDSP and dynamic laryngeal collapse was identified. There was an increased risk of DDSP in younger horses, and of laryngeal collapse in older horses. No association with gender or format of racing was identified. Conclusions and potential relevance: Palatal instability and DDSP comprised the most frequently encountered forms of dynamic collapse within the upper respiratory tract of the Thoroughbred racehorses in this study and are probably expressions of the same nasopharyngeal malfunction. Complex obstructions, i.e. where more than one structure collapses into the airway, occur frequently and therefore treatments that address solitary disorders may often be unsuccessful. Younger horses were found to be at greater risk of sustaining DDSP while older horses seemed more at risk to vocal cord collapse but not to collapse of the arytenoid cartilage itself.J. G. Lane, B. Bladon, D. R. M. Little, J. R. J. Naylor and S. H. Frankli

    Patterns of distribution and movement of fishes, Ophthalmolepis lineolatus and Hypoplectrodes maccullochi, on temperate rocky reefs of south eastern Australia

    No full text
    Current ecological models predict that reef fish assemblages will be strongly influenced by habitat type. Here we test hypotheses about habitat types and abundance patterns of temperate reef fishes from broad spatial scales (100 s of km) to small spatial scales of metres to tens of metres. Habitat preferences are also described over long periods of time (22 years) for two abundant taxa. Patterns of distribution and abundance varied over ∼ eight degrees of latitude (29.9–37.5°S) along the coast of New South Wales, Australia. Ophthalmolepis lineolatus (Labridae) preferred kelp and Barrens habitats and juveniles were most abundant in habitats rich in algae. This species also increased in abundance from North to South. In contrast, Hypoplectrodes maccullochi (Serranidae) were usually only found in the Barrens habitat and great variation was found among locations. Both taxa were most abundant on urchin grazed deep reefs (over 10 m deep). Habitat preferences of O. lineolatus and H. maccullochi appeared resistant to major environmental perturbations that included large El Niño events in 1991, 1998 and 2002. Home ranges of O. lineolatus varied from 52 m2 to 1,660 m2 and often overlapped; fish of all sizes were most abundant in algal dominated habitat. Limited movements and small home ranges (2.1–11.6 m2) combined with a strong affiliation for shelter indicated that most H. maccullochi are strongly site-attached. Habitat type is important to these taxonomically different fishes, but to varying degrees where H. maccullochi was more of a habitat specialist than O. lineolatus and would be more vulnerable to perturbations that alter Barrens. Changes in reef habitats will have a great influence on fish assemblages and this should also be considered in coastal planning (e.g. for Marine Protected Areas, MPAs) and the assessments of resistance and resilience of fishes to climate change
    corecore