9,282 research outputs found
Raman study of the Verwey transition in Magnetite at high-pressure and low-temperature; effect of Al doping
We report high-pressure low-temperature Raman studies of the Verwey
transition in pure and Al-doped magnetite (Fe_3O_4). The low temperature phase
of magnetite displays a number of additional Raman modes that serve as
transition markers. These transition markers allow one to investigate the
effect of hydrostatic pressure on the Verwey transition temperature. Al-doped
magnetite Fe_2.8Al_0.2O_4 (TV=116.5K) displays a nearly linear decrease of the
transition temperature with an increase of pressure yielding dP/dT_V = -0.096
GPa/K. In contrast pure magnetite displays a significantly steeper slope of the
PT equilibrium line with dP/dT_V = -0.18 GPa/K. The slope of the PT equilibrium
lines is related to the changes of the molar entropy and molar volume at the
transition. We compare our spectroscopic data with that obtained from the
ambient pressure specific heat measurements and find a good agreement in the
optimally doped magnetite. Our data indicates that Al doping leads to a smaller
entropy change and larger volume expansion at the transition. Our data displays
the trends that are consistent with the mean field model of the transition that
assumes charge ordering in magnetite.Comment: 17 pages, 3 figure
High magnetic field studies of the Vortex Lattice structure in YBa2Cu3O7
We report on small angle neutron scattering measurements of the vortex
lattice in twin-free YBa2Cu3O7, extending the previously investigated maximum
field of 11~T up to 16.7~T with the field applied parallel to the c axis. This
is the first microscopic study of vortex matter in this region of the
superconducting phase. We find the high field VL displays a rhombic structure,
with a field-dependent coordination that passes through a square configuration,
and which does not lock-in to a field-independent structure. The VL pinning
reduces with increasing temperature, but is seen to affect the VL correlation
length even above the irreversibility temperature of the lattice structure. At
high field and temperature we observe a melting transition, which appears to be
first order, with no detectable signal from a vortex liquid above the
transition
Exploring the fragile antiferromagnetic superconducting phase in CeCoIn5
CeCoIn5 is a heavy fermion Type-II superconductor which exhibits clear
indications of Pauli-limited superconductivity. A variety of measurements give
evidence for a transition at high magnetic fields inside the superconducting
state, when the field is applied either parallel to or perpendicular to the c
axis. When the field is perpendicular to the c axis, antiferromagnetic order is
observed on the high-field side of the transition, with a magnetic wavevector
of (q q 0.5), where q = 0.44 reciprocal lattice units. We show that this order
remains as the magnetic field is rotated out of the basal plane, but the
associated moment eventually disappears above 17 degrees, indicating that the
anomalies seen with the field parallel to the c axis are not related to this
magnetic order. We discuss the implications of this finding.Comment: Accepted Physical Review Letters, September 2010. 4 pages, 4 figure
Quasistationary binary inspiral. I. Einstein equations for the two Killing vector spacetime
The geometry of two infinitely long lines of mass moving in a fixed circular
orbit is considered as a toy model for the inspiral of a binary system of
compact objects due to gravitational radiation. The two Killing fields in the
toy model are used, according to a formalism introduced by Geroch, to describe
the geometry entirely in terms of a set of tensor fields on the two-manifold of
Killing vector orbits. Geroch's derivation of the Einstein equations in this
formalism is streamlined and generalized. The explicit Einstein equations for
the toy model spacetime are derived in terms of the degrees of freedom which
remain after a particular choice of gauge.Comment: 37 pages, REVTeX, one PostScript Figure included with epsfig; minor
formatting changes and copyright notice added for journal publicatio
Habitat conversion and global avian biodiversity loss
The magnitude of the impacts of human activities on global biodiversity has been documented at several organizational levels. However, although there have been numerous studies of the effects of local-scale changes in land use (e.g. logging) on the abundance of groups of organisms, broader continental or global-scale analyses addressing the same basic issues remain largely wanting. None the less, changing patterns of land use, associated with the appropriation of increasing proportions of net primary productivity by the human population, seem likely not simply to have reduced the diversity of life, but also to have reduced the carrying capacity of the environment in terms of the numbers of other organisms that it can sustain.
Here, we estimate the size of the existing global breeding bird population, and then make a first approximation as to how much this has been modified as a consequence of land-use changes wrought by human activities. Summing numbers across different land-use classes gives a best current estimate of a global population of less than 100 billion breeding bird individuals. Applying the same methodology to estimates of original land-use distributions suggests that conservatively this may represent a loss of between a fifth and a quarter of pre-agricultural bird numbers. This loss is shared across a range of temperate and tropical land-use types
- …