4,353 research outputs found
Contact force sensing in ablation of ventricular arrhythmias using a 56-hole open-irrigation catheter: a propensity-matched analysis.
PURPOSE: The effect of adding contact force (CF) sensing to 56-hole tip irrigation in ventricular arrhythmia (VA) ablation has not been previously studied. We aimed to compare outcomes with and without CF sensing in VA ablation using a 56-hole radiofrequency (RF) catheter. METHODS: A total of 164 patients who underwent first-time VA ablation using Thermocool SmartTouch Surround Flow (TC-STSF) catheter (Biosense-Webster, Diamond Bar, CA, USA) were propensity-matched in a 1:1 fashion to 164 patients who had first-time ablation using Thermocool Surround Flow (TC-SF) catheter. Patients were matched for age, gender, cardiac aetiology, ejection fraction and approach. Acute success, complications and long-term follow-up were compared. RESULTS: There was no difference between procedures utilising either TC-SF or TC-STSF in acute success (TC-SF: 134/164 (82%), TC-STSF: 141/164 (86%), p = 0.3), complications (TC-SF: 11/164 (6.7%), TC-STSF: 11/164 (6.7%), p = 1.0) or VA-free survival (TC-SF: mean arrhythmia-free survival time = 5.9 years, 95% CI = 5.4-6.4, TC-STSF: mean = 3.2 years, 95% CI = 3-3.5, log-rank p = 0.74). Fluoroscopy time was longer in normal hearts with TC-SF (19 min, IQR: 14-30) than TC-STSF (14 min, IQR: 8-25; p = 0.04). CONCLUSION: Both TC-SF and TC-STSF catheters are safe and effective in treating VAs. The use of CF sensing catheters did not improve safety or acute and long-term outcomes, but reduced fluoroscopy time in normal heart VA
Imaging galactic diffuse clouds: CO emission, reddening and turbulent flow in the gas around Zeta Oph
Methods: 12CO emission is imaged in position and position-velocity space
analyzed statistically, and then compared with maps of total reddening and with
models of the C+ - CO transition in H2-bearing diffuse clouds. Results: Around
Zeta Oph, 12CO emission appears in two distinct intervals of reddening centered
near EBV = 0.4 and 0.65 mag, of which < 0.2 mag is background material. Within
either interval, the integrated 12CO intensity varies up to 6-12 K-km/s
compared to 1.5 K-km/s toward Zeta Oph. Nearly 80% of the individual profiles
have velocity dispersions < 0.6 km/s, which are subsonic at the kinetic
temperature derived from H2 toward Zeta Oph, 55 K. Partly as a result, 12CO
emission exposes the internal, turbulent, supersonic (1-3 km/s) gas flows with
especial clarity in the cores of strong lines. The flows are manifested as
resolved velocity gradients in narrow, subsonically-broadened line cores.
Conclusions: The scatter between N(CO) and EBV in global, CO absorption line
surveys toward bright stars is present in the gas seen around Zeta Oph,
reflecting the extreme sensitivity of N(12CO) to ambient conditions. The
two-component nature of the optical absorption toward Zeta Oph is coincidental
and the star is occulted by a single body of gas with a complex internal
structure, not by two distinct clouds. The very bright 12CO lines in diffuse
gas arise at N(H2) ~ 10^21/cm^2 in regions of modest density n(H) ~ 200-500/cc
and somewhat more complete C+-CO conversion. Given the variety of structure in
the foreground gas, it is apparent that only large surveys of absorption
sightlines can hope to capture the intrinsic behavior of diffuse gas.Comment: 2009 A&A, in pres
Plasmon induced thermoelectric effect in graphene
Graphene has emerged as a promising material for optoelectronics due to its potential for ultrafast and broad-band photodetection. The photoresponse of graphene junctions is characterized by two competing photocurrent generation mechanisms: a conventional photovoltaic effect and a more dominant hot-carrier-assisted photothermoelectric (PTE) effect. The PTE effect is understood to rely on variations in the Seebeck coefficient through the graphene doping profile. A second PTE effect can occur across a homogeneous graphene channel in the presence of an electronic temperature gradient. Here, we study the latter effect facilitated by strongly localised plasmonic heating of graphene carriers in the presence of nanostructured electrical contacts resulting in electronic temperatures of the order of 2000 K. At certain conditions, the plasmon-induced PTE photocurrent contribution can be isolated. In this regime, the device effectively operates as a sensitive electronic thermometer and as such represents an enabling technology for development of hot carrier based plasmonic devices
Nonequilibrium spectral diffusion due to laser heating in stimulated photon echo spectroscopy of low temperature glasses
A quantitative theory is developed, which accounts for heating artifacts in
three-pulse photon echo (3PE) experiments. The heat diffusion equation is
solved and the average value of the temperature in the focal volume of the
laser is determined as a function of the 3PE waiting time. This temperature is
used in the framework of nonequilibrium spectral diffusion theory to calculate
the effective homogeneous linewidth of an ensemble of probe molecules embedded
in an amorphous host. The theory fits recently observed plateaus and bumps
without introducing a gap in the distribution function of flip rates of the
two-level systems or any other major modification of the standard tunneling
model.Comment: 10 pages, Revtex, 6 eps-figures, accepted for publication in Phys.
Rev.
The chemistry of C3 & Carbon Chain Molecules in DR21(OH)
(Abridged) We have observed velocity resolved spectra of four ro-vibrational
far-infrared transitions of C3 between the vibrational ground state and the
low-energy nu2 bending mode at frequencies between 1654--1897 GHz using HIFI on
board Herschel, in DR21(OH), a high mass star forming region. Several
transitions of CCH and c-C3H2 have also been observed with HIFI and the IRAM
30m telescope. A gas and grain warm-up model was used to identify the primary
C3 forming reactions in DR21(OH). We have detected C3 in absorption in four
far-infrared transitions, P(4), P(10), Q(2) and Q(4). The continuum sources MM1
and MM2 in DR21(OH) though spatially unresolved, are sufficiently separated in
velocity to be identified in the C3 spectra. All C3 transitions are detected
from the embedded source MM2 and the surrounding envelope, whereas only Q(4) &
P(4) are detected toward the hot core MM1. The abundance of C3 in the envelope
and MM2 is \sim6x10^{-10} and \sim3x10^{-9} respectively. For CCH and c-C3H2 we
only detect emission from the envelope and MM1. The observed CCH, C3, and
c-C3H2 abundances are most consistent with a chemical model with
n(H2)\sim5x10^{6} cm^-3 post-warm-up dust temperature, T_max =30 K and a time
of \sim0.7-3 Myr. Post warm-up gas phase chemistry of CH4 released from the
grain at t\sim 0.2 Myr and lasting for 1 Myr can explain the observed C3
abundance in the envelope of DR21(OH) and no mechanism involving
photodestruction of PAH molecules is required. The chemistry in the envelope is
similar to the warm carbon chain chemistry (WCCC) found in lukewarm corinos.
The observed lower C3 abundance in MM1 as compared to MM2 and the envelope
could be indicative of destruction of C3 in the more evolved MM1. The timescale
for the chemistry derived for the envelope is consistent with the dynamical
timescale of 2 Myr derived for DR21(OH) in other studies.Comment: 11 Pages, 6 figures, accepted for publication in A&
Determinants of medication adherence to antihypertensive medications among a Chinese population using Morisky medication adherence scale
<b>Background and objectives</b> Poor adherence to medications is one of the major public health challenges. Only one-third of the population reported successful control of blood pressure, mostly caused by poor drug adherence. However, there are relatively few reports studying the adherence levels and their associated factors among Chinese patients. This study aimed to study the adherence profiles and the factors associated with antihypertensive drug adherence among Chinese patients.<p></p>
<b>Methods</b> A cross-sectional study was conducted in an outpatient clinic located in the New Territories Region of Hong Kong. Adult patients who were currently taking at least one antihypertensive drug were invited to complete a self-administered questionnaire, consisting of basic socio-demographic profile, self-perceived health status, and self-reported medication adherence. The outcome measure was the Morisky Medication Adherence Scale (MMAS-8). Good adherence was defined as MMAS scores greater than 6 points (out of a total score of 8 points).<p></p>
<b>Results</b> From 1114 patients, 725 (65.1%) had good adherence to antihypertensive agents. Binary logistic regression analysis was conducted. Younger age, shorter duration of antihypertensive agents used, job status being employed, and poor or very poor self-perceived health status were negatively associated with drug adherence.<p></p>
<b>Conclusion</b> This study reported a high proportion of poor medication adherence among hypertensive subjects. Patients with factors associated with poor adherence should be more closely monitored to optimize their drug taking behavior
The abundance of HOC+ in diffuse clouds
We used the Plateau de Bure Interferometer to search for 3mm
absorption lines of HOC+ from local diffuse and translucent clouds occulting
compact extragalactic mm-wave continuum sources. We detected HOC+ in three
directions with column densities only 70-120 times below those of the HCO+
isomer, a factor 5-50 higher than typically found in dense dark gas but
comparable to recent observations of dense photon-dominated regions. The
observed amounts of HOC+, N(HOC+)/N(\HH) , can be made
in quiescent diffuse gas at thermal gas-kinetic rates if the {\HH O}/OH ratio
is of order unity, in mild violation of extant observational limits. %Comment: Accepted for publication in Astronomy and Astrophysics 23/08/200
Division VI/Commission 34/Working Group Astrochemistry
The study of molecules in space, known as astrochemistry or molecular astrophysics, is a rapidly growing field. Molecules exist in a wide range of environments in both gaseous and solid form, from our own solar system to the distant early universe. To astronomers, molecules are indispensable and unique probes of the physical conditions and dynamics of regions in which they are detected, especially the interstellar medium. In particular, the many stages of both low-mass and high-mass star formation are better understood today thanks to the analysis of molecular observations. Molecules can also yield a global picture of the past and present of sources. Moreover, molecules affect their environment by contributing to the heating and cooling processes that occur
Comparative study of CH+ and SH+ absorption lines observed towards distant star-forming regions
Aims. The HIFI instrument onboard Herschel has allowed high spectral
resolution and sensitive observations of ground-state transi- tions of three
molecular ions: the methylidyne cation CH+, its isotopologue 13CH+, and
sulfanylium SH+. Because of their unique chemical properties, a comparative
analysis of these cations provides essential clues to the link between the
chemistry and dynamics of the diffuse interstellar medium. Methods. The CH+,
13CH+, and SH+ lines are observed in absorption towards the distant high-mass
star-forming regions (SFRs) DR21(OH), G34.3+0.1, W31C, W33A, W49N, and W51, and
towards two sources close to the Galactic centre, SgrB2(N) and SgrA*+50. All
sight lines sample the diffuse interstellar matter along pathlengths of several
kiloparsecs across the Galactic Plane. In order to compare the velocity
structure of each species, the observed line profiles were deconvolved from the
hyperfine structure of the SH+ transition and the CH+, 13CH+, and SH+ spectra
were independently decomposed into Gaussian velocity components. To analyse the
chemical composition of the foreground gas, all spectra were divided, in a
second step, into velocity intervals over which the CH+, 13CH+, and SH+ column
densities and abundances were derived. Results. SH+ is detected along all
observed lines of sight, with a velocity structure close to that of CH+ and
13CH+. The linewidth distributions of the CH+, SH+, and 13CH+ Gaussian
components are found to be similar. These distributions have the same mean
( ~ 4.2 km s-1) and standard deviation
(\sigma(\delta\u{psion}) ~ 1.5 km s-1). This mean value is also close to that
of the linewidth distribution of the CH+ visible transitions detected in the
solar neighbourhood. We show that the lack of absorption components narrower
than 2 km s-1 is not an artefact caused by noise: the CH+, 13CH+, and SH+ line
profiles are therefore statistically broader than those of most species
detected in absorption in diffuse interstellar gas (e. g. HCO+, CH, or CN). The
SH+/CH+ column density ratio observed in the components located away from the
Galactic centre spans two orders of magnitude and correlates with the CH+
abundance. Conversely, the ratio observed in the components close to the
Galactic centre varies over less than one order of magnitude with no apparent
correlation with the CH+ abundance. The observed dynamical and chemical
properties of SH+ and CH+ are proposed to trace the ubiquitous process of
turbulent dissipation, in shocks or shears, in the diffuse ISM and the specific
environment of the Galactic centre regions
SUV39H1/H3K9me3 attenuates sulforaphane-induced apoptotic signaling in PC3 prostate cancer cells
The isothiocyanate sulforaphane is a promising molecule for development as a therapeutic agent for patients with metastatic prostate cancer. Sulforaphane induces apoptosis in advanced prostate cancer cells, slows disease progression in vivo and is well tolerated at pharmacological doses. However, the underlying mechanism(s) responsible for cancer suppression remain to be fully elucidated. In this investigation we demonstrate that sulforaphane induces posttranslational modification of histone methyltransferase SUV39H1 in metastatic, androgen receptor-negative PC3 prostate cancer cells. Sulforaphane stimulates ubiquitination and acetylation of SUV39H1 within a C-terminal nuclear localization signal peptide motif and coincides with its dissociation from chromatin and a decrease in global trimethyl-histone H3 lysine 9 (H3K9me3) levels. Exogenous SUV39H1 expression leads to an increase in H3K9me3 and decreases sulforaphane-induced apoptotic signaling. SUV39H1 is thus identified as a novel mediator of sulforaphane cytotoxicity in PC3 cells. Our results also suggest SUV39H1 dynamics as a new therapeutic target in advanced prostate cancers
- …