10 research outputs found

    A Missense Mutation in the Aggrecan C-type Lectin Domain Disrupts Extracellular Matrix Interactions and Causes Dominant Familial Osteochondritis Dissecans

    No full text
    Osteochondritis dissecans is a disorder in which fragments of articular cartilage and subchondral bone dislodge from the joint surface. We analyzed a five-generation family in which affected members had autosomal-dominant familial osteochondritis dissecans. A genome-wide linkage analysis identified aggrecan (ACAN) as a prime candidate gene for the disorder. Sequence analysis of ACAN revealed heterozygosity for a missense mutation (c.6907G > A) in affected individuals, resulting in a p.V2303M amino acid substitution in the aggrecan G3 domain C-type lectin, which mediates interactions with other proteins in the cartilage extracellular matrix. Binding studies with recombinant mutated and wild-type G3 proteins showed loss of fibulin-1, fibulin-2, and tenascin-R interactions for the V2303M protein. Mass spectrometric analyses of aggrecan purified from patient cartilage verified that V2303M aggrecan is produced and present in the tissue. Our results provide a molecular mechanism for the etiology of familial osteochondritis dissecans and show the importance of the aggrecan C-type lectin interactions for cartilage function in vivo

    ALPPS for Locally Advanced Intrahepatic Cholangiocarcinoma: Did Aggressive Surgery Lead to the Oncological Benefit? An International Multi-center Study

    No full text
    Background ALPPS is found to increase the resectability of primary and secondary liver malignancy at the advanced stage. The aim of the study was to verify the surgical and oncological outcome of ALPPS for intrahepatic cholangiocarcinoma (ICC). Methods The study cohort was based on the ALPPS registry with patients from 31 international centers between August 2009 and January 2018. Propensity score matched patients receiving chemotherapy only were selected from the SEER database as controls for the survival analysis. Results One hundred and two patients undergoing ALPPS were recruited, 99 completed the second stage with median inter-stage duration of 11 days. The median kinetic growth rate was 23 ml/day. R0 resection was achieved in 87 (85%). Initially high rates of morbidity and mortality decreased steadily to a 29% severe complication rate and 7% 90-day morbidity in the last 2 years. Post-hepatectomy liver failure remained the main cause of 90-day mortality. Multivariate analysis revealed insufficient future liver remnant at the stage-2 operation (FLR2) to be the only risk factor for severe complications (OR 2.91, p = 0.02). The propensity score matching analysis showed a superior overall survival in the ALPPS group compared to palliative chemotherapy (median overall survival: 26.4 months vs 14 months; 1-, 2-, and 3-year survival rates: 82.4%, 70.5% and 39.6% vs 51.2%, 21.4% and 11.3%, respectively, p < 0.01). The survival benefit, however, was not confirmed in the subgroup analysis for patients with insufficient FLR2 or multifocal ICC. Conclusion ALPPS showed high efficacy in achieving R0 resections in locally advanced ICC. To get the most oncological benefit from this aggressive surgery, ALPPS would be restricted to patients with single lesions and sufficient FLR2

    De novo mutations in <i>MSL3</i> cause an X-linked syndrome marked by impaired histone H4 lysine 16 acetylation

    Get PDF
    The etiological spectrum of ultra-rare developmental disorders remains to be fully defined. Chromatin regulatory mechanisms maintain cellular identity and function, where misregulation may lead to developmental defects. Here, we report pathogenic variations in MSL3, which encodes a member of the chromatin-associated male-specific lethal (MSL) complex responsible for bulk histone H4 lysine 16 acetylation (H4K16ac) in flies and mammals. These variants cause an X-linked syndrome affecting both sexes. Clinical features of the syndrome include global developmental delay, progressive gait disturbance, and recognizable facial dysmorphism. MSL3 mutations affect MSL complex assembly and activity, accompanied by a pronounced loss of H4K16ac levels in vivo. Patient-derived cells display global transcriptome alterations of pathways involved in morphogenesis and cell migration. Finally, we use histone deacetylase inhibitors to rebalance acetylation levels, alleviating some of the molecular and cellular phenotypes of patient cells. Taken together, we characterize a syndrome that allowed us to decipher the developmental importance of MSL3 in humans

    De novo mutations in MSL3 cause an X-linked syndrome marked by impaired histone H4 lysine 16 acetylation

    No full text
    corecore