12 research outputs found

    Quantitative trace analysis of a broad range of antiviral drugs in poultry muscle using column-switch liquid chromatography coupled to tandem mass spectrometry

    Get PDF
    A liquid chromatography–tandem mass spectrometry method for the analysis of seven antiviral drugs, zanamivir, ribavirin, oseltamivir, oseltamivir carboxylate, amantadine, rimantadine and arbidol, in poultry muscle is reported. The antiviral drugs were extracted from the homogenized poultry muscle sample using methanol. The extract was purified using tandem solid-phase extraction combining a cation exchange cartridge and a phenylboronic acid cartridge. To prevent excessive matrix effects, the analytes were separated from the matrix constituents using a column-switch liquid chromatography system combining a reversed-phase and a Hypercarb analytical column. Detection was carried out using tandem mass spectrometry. The method was fully validated according to 2002/657/EC [1] and proved to be adequate for quantification and confirmation of zanamivir and ribavirin at 10 Όg kg−1, oseltamivir, oseltamivir carboxylate, amantadine and rimantadine at levels below 1.0 Όg kg−1 and for qualitative confirmatory analysis of arbidol at levels below 1 Όg kg−1

    A new extraction procedure to abate the burden of non-extractable antibiotic residues in manure

    No full text
    Through agricultural soil fertilization using organic manure, antibiotic residues can accumulate in the environment. In order to assess the risks of environmental pollution by veterinary drugs, monitoring of manure for antibiotic residues is necessary. As manure is a complex matrix, extraction of antibiotics proved to be challenging. In this study, 24 extraction solvents were assessed for the extraction of residues from manure representing ten antibiotics from the antibiotic classes tetracyclines, quinolones, macrolides, lincosamides and sulfonamides. Especially for the tetracyclines and quinolones the extraction solvent selection is critical, due to high fractions of non-extractable residues especially when using aqueous solvents (62-77% and 90-95% respectively when using milli-Q water). In contrast, sulfonamides can effectively be extracted with aqueous solvents. Overall, 0.125% trifluoroacetic acid in acetonitrile in combination with McIlvain-EDTA buffer proved to be the most effective extraction solvent. A longitudinal study pointed out that most antibiotics bind to solid manure particles instantaneously after addition. Trimethoprim is an exception, but because by using the optimal extraction solvent, the optimum fraction of bound residues is desorbed, this does not hamper quantitative analysis when using spiked manure quality control samples. Based on these new insights, the current in-house multi-residue LC-MS/MS method for manure analysis, containing 48 antibiotics, was revised, additionally validated and applied to 34 incurred manure samples

    A new extraction procedure to abate the burden of non-extractable antibiotic residues in manure

    No full text
    Through agricultural soil fertilization using organic manure, antibiotic residues can accumulate in the environment. In order to assess the risks of environmental pollution by veterinary drugs, monitoring of manure for antibiotic residues is necessary. As manure is a complex matrix, extraction of antibiotics proved to be challenging. In this study, 24 extraction solvents were assessed for the extraction of residues from manure representing ten antibiotics from the antibiotic classes tetracyclines, quinolones, macrolides, lincosamides and sulfonamides. Especially for the tetracyclines and quinolones the extraction solvent selection is critical, due to high fractions of non-extractable residues especially when using aqueous solvents (62–77% and 90–95% respectively when using milli-Q water). In contrast, sulfonamides can effectively be extracted with aqueous solvents. Overall, 0.125% trifluoroacetic acid in acetonitrile in combination with McIlvain-EDTA buffer proved to be the most effective extraction solvent. A longitudinal study pointed out that most antibiotics bind to solid manure particles instantaneously after addition. Trimethoprim is an exception, but because by using the optimal extraction solvent, the optimum fraction of bound residues is desorbed, this does not hamper quantitative analysis when using spiked manure quality control samples. Based on these new insights, the current in-house multi-residue LC-MS/MS method for manure analysis, containing 48 antibiotics, was revised, additionally validated and applied to 34 incurred manure samples.</p

    Peatland vascular plant functional types affect methane dynamics by altering microbial community structure

    No full text
    Peatlands are natural sources of atmospheric methane (CH4), an important greenhouse gas. It is established that peatland methane dynamics are controlled by both biotic and abiotic conditions, yet the interactive effect of these drivers is less studied and consequently poorly understood. Climate change affects the distribution of vascular plant functional types (PFTs) in peatlands. By removing specific PFTs, we assessed their effects on peat organic matter chemistry, microbial community composition and on potential methane production (PMP) and oxidation (PMO) in two microhabitats (lawns and hummocks). Whilst PFT removal only marginally altered the peat organic matter chemistry, we observed considerable changes in microbial community structure. This resulted in altered PMP and PMO. PMP was slightly lower when graminoids were removed, whilst PMO was highest in the absence of both vascular PFTs (graminoids and ericoids), but only in the hummocks. Path analyses demonstrate that different plant-soil interactions drive PMP and PMO in peatlands and that changes in biotic and abiotic factors can have auto-amplifying effects on current CH4 dynamics.Synthesis. Changing environmental conditions will, both directly and indirectly, affect peatland processes, causing unforeseen changes in CH4 dynamics. The resilience of peatland CH4 dynamics to environmental change therefore depends on the interaction between plant community composition and microbial communities

    Data from: Peatland vascular plant functional types affect methane dynamics by altering microbial community structure

    No full text
    1. Peatlands are natural sources of atmospheric methane (CH4), an important greenhouse gas. It is established that peatland methane dynamics are controlled by both biotic and abiotic conditions, yet the interactive effect of these drivers is less studied and consequently poorly understood. 2. Climate change affects the distribution of vascular plant functional types (PFTs) in peatlands. By removing specific PFTs, we assessed their effects on peat organic matter chemistry, microbial community composition and on potential methane production (PMP) and oxidation (PMO) in two microhabitats (lawns and hummocks). 3. Whilst PFT removal only marginally altered the peat organic matter chemistry, we observed considerable changes in microbial community structure. This resulted in altered PMP and PMO. PMP was slightly lower when graminoids were removed, whilst PMO was highest in the absence of both vascular PFTs (graminoids and ericoids), but only in the hummocks. 4. Path analyses demonstrate that different plant–soil interactions drive PMP and PMO in peatlands and that changes in biotic and abiotic factors can have auto-amplifying effects on current CH4 dynamics. 5. Synthesis. Changing environmental conditions will, both directly and indirectly, affect peatland processes, causing unforeseen changes in CH4 dynamics. The resilience of peatland CH4 dynamics to environmental change therefore depends on the interaction between plant community composition and microbial communities

    Ecosystem respiration

    No full text
    To asses the effect of vascular plant removal in aforementioned experiment, one year after the start of the experiment, we measured carbon dioxide respiration rates on 10 cm diameter collars using an automated soil CO2 flux system (LI-8100, LI-COR Biosciences, USA). We compare the fluxes from the vascular plant removal plots with respiration rates from comparable areas in the control plots with little or no vascular plant cover, and assessed the relationship with the amount of removed biomass

    Potential methane oxidation, production, organic matter compositon, gene copies, and environmental data

    No full text
    In early June 2011, 48 experimental plots (50 × 50 cm) were established in lawn (n = 24) and hummock microhabitats (n = 24) in a Sphagnum-dominated ombrotrophic peatland in the Store Mosse National Park, Sweden (57°17’54 N, 14°00’39 E). In both microhabitats, the vascular plant functional type (PFT) composition was manipulated by removing (clipping) ericoids (–Eric), graminoids (–Gram), or both. A set of control plots remained intact. One year later, peat samples (c. 20 g. f. wt) were collected from all plots (n =48) at the aerobic/anaerobic boundary (10 – 30 cm below the peat surface, microhabitat dependent). These samples were used to measure potential methane production, potential methane oxidation, organic matter chemistry, pmoA gene copies, and environmental data
    corecore