4 research outputs found

    Evaluating approaches for estimating peat depth

    Get PDF
    Estimates of peat depth are required to inform understanding of peatland development, functioning, and ecosystem services such as carbon storage. However, there is a considerable lack of peat depth data at local, national, and global scales. Recent studies have attempted to address this knowledge deficit by using manual probing and ground-penetrating radar (GPR) to estimate depth. Despite increasing application, little consideration has been given to the accuracy of either of these techniques. This study examines the accuracy of probing and GPR for measuring peat depth. Corresponding GPR and probing surveys were carried out at a catchment scale in a blanket peatland. GPR depth estimations, calibrated using common midpoint (CMP) surveys, were found to be on average 35% greater than probe measurements. The source of disagreement was found to be predominantly caused by depth probes becoming obstructed by artifacts within the peat body, although occasionally probing rods also penetrated sediments underlying the peat. Using the Complex Refractive Index Model, it was found that applying a single velocity of 0.036 m ns−1 across a single site may also result in −8 to +17% error in estimation of peat depth due to spatial variability in water content and porosity. It is suggested that GPR calibrated at each site using CMP surveys may provide a more accurate method for measuring peat depth

    COSC-1 - drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia

    Get PDF
    The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project focuses on mountain building processes in a major mid-Palaeozoic orogen in western Scandinavia and its comparison with modern analogues. The project investigates the subduction-generated Seve Nape Complex. These in part under ultra-high-pressure conditions metamorphosed outer continental margin and continent–ocean transition zone assemblages were emplaced onto the Baltoscandian platform and there influenced the underlying allochthons and the basement. COSC-1 is the first of two ca. 2.5 km deep, fully cored drill holes located in the vicinity of the abandoned Fröå mine, close to the town of Åre in Jämtland, central Sweden. It sampled a thick section of the lower part of the Seve Complex and was planned to penetrate its basal thrust zone into the underlying lower-grade metamorphosed allochthon. The drill hole reached a depth of 2495.8 m and nearly 100 % core recovery was achieved. Although planning was based on existing geological mapping and new high-resolution seismic surveys, the drilling resulted in some surprises: the Lower Seve Nappe proved to be composed of rather homogenous gneisses, with only subordinate mafic bodies, and its basal thrust zone was unexpectedly thick (> 800 m). The drill hole did not penetrate the bottom of the thrust zone. However, lower-grade metasedimentary rocks were encountered in the lowermost part of the drill hole together with garnetiferous mylonites tens of metres thick. The tectonostratigraphic position is still unclear, and geological and geophysical interpretations are under revision. The compact gneisses host only eight fluid conducting zones of limited transmissivity between 300 m and total depth. Downhole measurements suggest an uncorrected average geothermal gradient of ~ 20 °C km−1. This paper summarizes the operations and preliminary results from COSC-1 (ICDP 5054-1-A), drilled from early May to late August 2014, and is complemented by a detailed operational report and the data repository
    corecore