42 research outputs found

    Germline PTEN mutations are rare and highly penetrant

    Get PDF
    Cowden syndrome (multiple hamartoma syndrome, MIM 158350) is an early onset syndrome characterized by multiple hamartomas in the skin, mucous membranes, breast, thyroid and endometrium. Patients with Cowden syndrome have increased risk of breast cancer, thyroid cancer and endometrial cancer. In 1997 germline mutations in PTEN were demonstrated to cause Cowden syndrome. We report the results of diagnostic and predictive testing in all families with Cowden syndrome or suspected Cowden syndrome registered at the Norwegian cancer family clinics. PTEN mutations were found in all six families meeting the clinical criteria for Cowden syndrome, in none of the two families assumed to have Cowden syndrome but not fulfilling the criteria, and in none of the eight families selected in our computerized medical files to have a combination of breast and thyroid cancers. Age-related penetrances for the various neoplasms are given. All families but one were small and de novo mutations were found

    Optimality of broken extremals

    Full text link
    In this paper we analyse the optimality of broken Pontryagin extremal for an n-dimensional affine control system with a control parameter, taking values in a k- dimensional closed ball. We prove the optimality of broken normal extremals when n = 3 and the controllable vector fields form a contact distribution, and when the Lie algebra of the controllable fields is locally orthogonal to the singular locus and the drift does not belong to it. Moreover, if k = 2, we show the optimality of any broken extremal even abnormal when the controllable fields do not form a contact distribution in the point of singularity.Comment: arXiv admin note: text overlap with arXiv:1610.0675

    Prediction of relapse-free survival according to adjuvant chemotherapy and regulator of chromosome condensation 2 (RCC2) expression in colorectal cancer

    Get PDF
    Background There is a need for improved selection of patients for adjuvant chemotherapy after resection of non-metastatic colorectal cancer (CRC). Regulator of chromosome condensation 2 (RCC2) is a potential prognostic biomarker. We report on the establishment of a robust protocol for RCC2 expression analysis and prognostic tumour biomarker evaluation in patients who did and did not receive adjuvant chemotherapy. Materials and methods RCC2 was analysed in 2916 primary CRCs from the QUASAR2 randomised trial and two single-hospital Norwegian series. A new protocol using fluorescent antibody staining and digital image analysis was optimised. Biomarker value for 5-year relapse-free survival was analysed in relation to tumour stage, adjuvant chemotherapy and the molecular markers microsatellite instability, KRAS/BRAF(V600E)/TP53 mutations and CDX2 expression. Results Low RCC2 expression was scored in 41% of 2696 evaluable samples. Among patients with stage I-III CRC who had not received adjuvant chemotherapy, low RCC2 expression was an independent marker of inferior 5-year relapse-free survival in multivariable Cox models including clinicopathological factors and molecular markers (HR 1.45, 95% CI 1.09 to 1.94, p=0.012, N=521). RCC2 was not prognostic in patients who had received adjuvant chemotherapy, neither in QUASAR2 nor the pooled Norwegian series. The interaction between RCC2 and adjuvant chemotherapy for prediction of patient outcome was significant in stage III, and strongest among patients with microsatellite stable tumours (p(interaction)=0.028). Conclusions Low expression of RCC2 is a biomarker for poor prognosis in patients with stage I-III CRC and seems to be a predictive biomarker for effect of adjuvant chemotherapy.Peer reviewe

    MDM2 Promoter SNP344T>A (rs1196333) Status Does Not Affect Cancer Risk

    Get PDF
    The MDM2 proto-oncogene plays a key role in central cellular processes like growth control and apoptosis, and the gene locus is frequently amplified in sarcomas. Two polymorphisms located in the MDM2 promoter P2 have been shown to affect cancer risk. One of these polymorphisms (SNP309T>G; rs2279744) facilitates Sp1 transcription factor binding to the promoter and is associated with increased cancer risk. In contrast, SNP285G>C (rs117039649), located 24 bp upstream of rs2279744, and in complete linkage disequilibrium with the SNP309G allele, reduces Sp1 recruitment and lowers cancer risk. Thus, fine tuning of MDM2 expression has proven to be of significant importance with respect to tumorigenesis. We assessed the potential functional effects of a third MDM2 promoter P2 polymorphism (SNP344T>A; rs1196333) located on the SNP309T allele. While in silico analyses indicated SNP344A to modulate TFAP2A, SPIB and AP1 transcription factor binding, we found no effect of SNP344 status on MDM2 expression levels. Assessing the frequency of SNP344A in healthy Caucasians (n = 2,954) and patients suffering from ovarian (n = 1,927), breast (n = 1,271), endometrial (n = 895) or prostatic cancer (n = 641), we detected no significant difference in the distribution of this polymorphism between any of these cancer forms and healthy controls (6.1% in healthy controls, and 4.9%, 5.0%, 5.4% and 7.2% in the cancer groups, respectively). In conclusion, our findings provide no evidence indicating that SNP344A may affect MDM2 transcription or cancer risk

    Effect of the MDM2 promoter polymorphisms SNP309T>G and SNP285G>C on the risk of ovarian cancer in BRCA1 mutation carriers

    Get PDF
    Background While BRCA mutation carriers possess a 20-40% lifetime risk of developing ovarian cancer, knowledge about genetic modifying factors influencing the phenotypic expression remains obscure. We explored the distribution of the MDM2 polymorphisms SNP309T>G and the recently discovered SNP285G>C in Norwegian patients with BRCA related ovarian cancer. Methods 221 BRCA related ovarian cancer cases (BRCA1; n = 161 and BRCA2; n = 60) were tested for the MDM2 polymorphisms. Results were compared to healthy controls (n = 2,465). Results The SNP309G allele was associated with elevated OR for ovarian cancer in BRCA1 mutation carriers (SNP309TG: OR 1.53; CI 1.07-2.19; p = 0.020; SNP309GG: OR 1.92; CI 1.19-3.10; p = 0.009; SNP309TG+GG combined: OR 1.61; CI 1.15-2.27; p = 0.005). In contrast, the SNP285C allele reduced risk of BRCA1 related ovarian cancer in carriers of the SNP309G allele (OR 0.50; CI 0.24-1.04; p = 0.057). Censoring individuals carrying the SNP285C/309G haplotype from the analysis elevated the OR related to the SNP309G allele (OR 1.73; CI 1.23-2.45; p = 0.002). The mean age at disease onset was 3.1 years earlier in carriers of SNP309TG+GG as compared to carriers of SNP309TT (p = 0.068). No such associations were found in BRCA2 related ovarian cancer. Conclusions Our results indicate the SNP309G allele to increase and the SNP285C allele to reduce the risk of BRCA1 related ovarian cancer. If confirmed in independent studies, this finding may have implications to counseling and decision-making regarding risk reducing measures in BRCA1 mutation carriers

    MDM2 Promoter SNP344T>A (rs1196333) Status Does Not Affect Cancer Risk

    Get PDF
    The MDM2 proto-oncogene plays a key role in central cellular processes like growth control and apoptosis, and the gene locus is frequently amplified in sarcomas. Two polymorphisms located in the MDM2 promoter P2 have been shown to affect cancer risk. One of these polymorphisms (SNP309T>G; rs2279744) facilitates Sp1 transcription factor binding to the promoter and is associated with increased cancer risk. In contrast, SNP285G>C (rs117039649), located 24 bp upstream of rs2279744, and in complete linkage disequilibrium with the SNP309G allele, reduces Sp1 recruitment and lowers cancer risk. Thus, fine tuning of MDM2 expression has proven to be of significant importance with respect to tumorigenesis. We assessed the potential functional effects of a third MDM2 promoter P2 polymorphism (SNP344T>A; rs1196333) located on the SNP309T allele. While in silico analyses indicated SNP344A to modulate TFAP2A, SPIB and AP1 transcription factor binding, we found no effect of SNP344 status on MDM2 expression levels. Assessing the frequency of SNP344A in healthy Caucasians (n = 2,954) and patients suffering from ovarian (n = 1,927), breast (n = 1,271), endometrial (n = 895) or prostatic cancer (n = 641), we detected no significant difference in the distribution of this polymorphism between any of these cancer forms and healthy controls (6.1% in healthy controls, and 4.9%, 5.0%, 5.4% and 7.2% in the cancer groups, respectively). In conclusion, our findings provide no evidence indicating that SNP344A may affect MDM2 transcription or cancer risk

    Genomic and prognostic heterogeneity among RAS/BRAFV600E/TP53 co-mutated resectable colorectal liver metastases

    No full text
    Hepatic resection is potentially curative for patients with colorectal liver metastases, but the treatment benefit varies. KRAS/NRAS (RAS)/TP53 co‐mutations are associated with a poor prognosis after resection, but there is large variation in patient outcome within the mutation groups, and genetic testing is currently not used to evaluate benefit from surgery. We have investigated the potential for improved prognostic stratification by combined biomarker analysis with DNA copy number aberrations (CNAs), and taking tumor heterogeneity into account. We determined the mutation status of RAS, BRAFV600, and TP53 in 441 liver lesions from 171 patients treated by partial hepatectomy for metastatic colorectal cancer. CNAs were profiled in 232 tumors from 67 of the patients. Mutations and high‐level amplifications of cancer‐critical genes, the latter including ERBB2 and EGFR, were predominantly homogeneous within patients. RAS/BRAFV600E and TP53 co‐mutations were associated with a poor patient outcome (hazard ratio, HR, 3.9, 95% confidence interval, CI, 1.3–11.1, P = 0.012) in multivariable analyses with clinicopathological variables. The genome‐wide CNA burden and intrapatient intermetastatic CNA heterogeneity varied within the mutation groups, and the CNA burden had prognostic associations in univariable analysis. Combined prognostic analyses of RAS/BRAFV600E/TP53 mutations and CNAs, either as a high CNA burden or high intermetastatic CNA heterogeneity, identified patients with a particularly poor outcome (co‐mutation/high CNA burden: HR 2.7, 95% CI 1.2–5.9, P = 0.013; co‐mutation/high CNA heterogeneity: HR 2.5, 95% CI 1.1–5.6, P = 0.022). In conclusion, DNA copy number profiling identified genomic and prognostic heterogeneity among patients with resectable colorectal liver metastases with co‐mutated RAS/BRAFV600E/TP53

    Impact of the APOBEC3A/B deletion polymorphism on risk of ovarian cancer

    Get PDF
    Abstract A germline 29.5-kb deletion variant removes the 3’ end of the APOBEC3A gene and a large part of APOBEC3B , creating a hybrid gene that has been linked to increased APOBEC3 activity and DNA damage in human cancers. We genotyped the APOBEC3A/B deletion in hospital-based samples of 1398 Norwegian epithelial ovarian cancer patients without detected BRCA1/2 germline mutations and compared to 1,918 healthy female controls, to assess the potential cancer risk associated with the deletion. We observed an association between APOBEC3A/B status and reduced risk for ovarian cancer (OR = 0.75; CI = 0.61–0.91; p  = 0.003) applying the dominant model. Similar results were found in other models. The association was observed both in non-serous and serous cases (dominant model: OR = 0.69; CI = 0.50–0.95; p  = 0.018 and OR = 0.77; CI = 0.62–0.96; p  = 0.019, respectively) as well as within high-grade serous cases (dominant model: OR = 0.79; CI = 0.59–1.05). For validation purposes, we mined an available large multinational GWAS-based data set of > 18,000 cases and > 26,000 controls for SNP rs12628403, known to be in linkage disequilibrium with the APOBEC3A/B deletion. We found a non-significant trend for SNP rs12628403 being linked to reduced risk of ovarian cancer in general and similar trends for all subtypes. For clear cell cancers, the risk reduction reached significance (OR = 0.85; CI = 0.69–1.00)
    corecore