346 research outputs found

    Complete Semantics to empower Touristic Service Providers

    Full text link
    The tourism industry has a significant impact on the world's economy, contributes 10.2% of the world's gross domestic product in 2016. It becomes a very competitive industry, where having a strong online presence is an essential aspect for business success. To achieve this goal, the proper usage of latest Web technologies, particularly schema.org annotations is crucial. In this paper, we present our effort to improve the online visibility of touristic service providers in the region of Tyrol, Austria, by creating and deploying a substantial amount of semantic annotations according to schema.org, a widely used vocabulary for structured data on the Web. We started our work from Tourismusverband (TVB) Mayrhofen-Hippach and all touristic service providers in the Mayrhofen-Hippach region and applied the same approach to other TVBs and regions, as well as other use cases. The rationale for doing this is straightforward. Having schema.org annotations enables search engines to understand the content better, and provide better results for end users, as well as enables various intelligent applications to utilize them. As a direct consequence, the region of Tyrol and its touristic service increase their online visibility and decrease the dependency on intermediaries, i.e. Online Travel Agency (OTA).Comment: 18 pages, 6 figure

    The LD Adolescent and the Sat

    Full text link
    School personnel can help LD students prepare for the SAT in a variety of ways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66543/2/10.1177_105345128502000402.pd

    Testing Apps With Real-World Inputs

    Get PDF
    To test mobile apps, one requires realistic and coherent test inputs. The Link approach for Web testing has shown that knowledge bases such as DBPedia can be a reliable source of semantically coherent inputs. In this paper, we adapt and extend the Link approach towards test generation for mobile applications: (1) We identify and match descriptive labels with input fields, based on the Gestalt principles of human perception; (2) We then use natural language processing techniques to extract the concept associated with the label; (3) We use this concept to query a knowledge base for candidate input values; (4) We cluster the UI elements according to their functionality into input and actions, filling the input elements first and then interacting with the actions. Our evaluation shows that leveraging knowledge bases for testing mobile apps with realistic inputs is effective. On average, our approach covered 9% more statements than randomly generated text inputs

    Semantic aware Bayesian network model for actionable knowledge discovery in linked data

    Get PDF
    The majority of the conventional mining algorithms treat the mining process as an isolated data-driven procedure and overlook the semantic of the targeted data. As a result, the generated patterns are abundant and end users cannot act upon them seamlessly. Furthermore, interdisciplinary knowledge can not be obtained from domain-specific silo of data. The emergence of Linked Data (LD) as a new model for knowledge representation, which intertwines data with its semantics, has introduced new opportunities for data miners. Accordingly, this paper proposes an ontology-based Semantic-Aware Bayesian network (BN) model. In contrast to the existing mining algorithms, the proposed model does into transform the original format of the LD set. Therefore, it not only accommodates the semantic aspects in LD, but also caters to the need of connecting different data-sets from different domains. We evaluate the proposed model on a Bone Dysplasia dataset, Experimental results show promising performance

    WindS@UP: the e-science platform for windscanner.eu

    Get PDF
    The WindScanner e-Science platform architecture and the underlying premises are discussed. It is a collaborative platform that will provide a repository for experimental data and metadata. Additional data processing capabilities will be incorporated thus enabling in-situ data processing. Every resource in the platform is identified by a Uniform Resource Identifier (URI), enabling an unequivocally identification of the field(s) campaign(s) data sets and metadata associated with the data set or experience. This feature will allow the validation of field experiment results and conclusions as all managed resources will be linked. A centralised node (Hub) will aggregate the contributions of 6 to 8 local nodes from EC countries and will manage the access of 3 types of users: data-curator, data provider and researcher. This architecture was designed to ensure consistent and efficient research data access and preservation, and exploitation of new research opportunities provided by having this “Collaborative Data Infrastructure”. The prototype platform—WindS@UP—enables the usage of the platform by humans via a Web interface or by machines using an internal API (Application Programming Interface). Future work will improve the vocabulary (“application profile”) used to describe the resources managed by the platform.The WindScanner.eu|The European WindScanner Facility|is an ESFRI project (N: 312372) under the FP7-Infrastructures-2012-1. The authors are grateful to all colleagues in WP5 for the fruitful discussions, namely Dimitri Foussekis (CRES), Doron Callies (IWES Fraunhofer), Hans Verhoef (ECN), Harald Svendsen (Sintef), Jan Willem Wagenaar (ECN), Javier Sanz Rodrigo (CENER), Martin Bitter (Forwind), Mikael Sj oholm (DTU), Steen Arne S rensen (DTU) and Teresa Sim~oes (LNEG)

    On the Mental Workload Assessment of Uplift Mapping Representations in Linked Data

    Get PDF
    Self-reporting procedures have been largely employed in literature to measure the mental workload experienced by users when executing a specific task. This research proposes the adoption of these mental workload assessment techniques to the task of creating uplift mappings in Linked Data. A user study has been performed to compare the mental workload of “manually” creating such mappings, using a formal mapping language and a text editor, to the use of a visual representation, based on the block metaphor, that generate these mappings. Two subjective mental workload instruments, namely the NASA Task Load Index and the Workload Profile, were applied in this study. Preliminary results show the reliability of these instruments in measuring the perceived mental workload for the task of creating uplift mappings. Results also indicate that participants using the visual representation achieved smaller and more consistent scores of mental workload

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    Prikaz znanja u internetu stvari: semantičko modeliranje i njegove primjene

    Get PDF
    Semantic modelling provides a potential basis for interoperating among different systems and applications in the Internet of Things (IoT). However, current work has mostly focused on IoT resource management while not on the access and utilisation of information generated by the “Things”. We present the design of a comprehensive and lightweight semantic description model for knowledge representation in the IoT domain. The design follows the widely recognised best practices in knowledge engineering and ontology modelling. Users are allowed to extend the model by linking to external ontologies, knowledge bases or existing linked data. Scalable access to IoT services and resources is achieved through a distributed, semantic storage design. The usefulness of the model is also illustrated through an IoT service discovery method.Semantičko modeliranje pruža potencijalnu osnovu za me.udjelovanje različitih sustava i aplikacija unutar interneta stvari (IoT). Međutim, postojeći radovi uglavnom su fokusirani na upravljanje IoT resursima, ali ne i pristupu i korištenju informacija koje generira “stvar”. Predstavljamo projektiranje sveobuhvatnog i laganog semantičkog opisnog modela za prikaz znanja u IoT domeni. Projektiranje slijedi široko-priznate najbolje običaje u inženjerstvu znanja i ontološkom modeliranju. Korisnicima se dopušta proširenje modela povezivanjem na eksterne ontologije, baze znanja ili postoje će povezane podatke. Skalabilni pristup IoT uslugama i resursima postiže se kroz distribuirano, semantičko projektiranje pohrane. Upotrebljivost modela tako.er je ilustrirana kroz metodu pronalaska IoT usluga
    corecore