1,722 research outputs found

    Ising spins coupled to a four-dimensional discrete Regge skeleton

    Full text link
    Regge calculus is a powerful method to approximate a continuous manifold by a simplicial lattice, keeping the connectivities of the underlying lattice fixed and taking the edge lengths as degrees of freedom. The discrete Regge model employed in this work limits the choice of the link lengths to a finite number. To get more precise insight into the behavior of the four-dimensional discrete Regge model, we coupled spins to the fluctuating manifolds. We examined the phase transition of the spin system and the associated critical exponents. The results are obtained from finite-size scaling analyses of Monte Carlo simulations. We find consistency with the mean-field theory of the Ising model on a static four-dimensional lattice.Comment: 19 pages, 7 figure

    Bound States in Sharply Bent Waveguides: Analytical and Experimental Approach

    Full text link
    Quantum wires and electromagnetic waveguides possess common features since their physics is described by the same wave equation. We exploit this analogy to investigate experimentally with microwave waveguides and theoretically with the help of an effective potential approach the occurrence of bound states in sharply bent quantum wires. In particular, we compute the bound states, study the features of the transition from a bound to an unbound state caused by the variation of the bending angle and determine the critical bending angles at which such a transition takes place. The predictions are confirmed by calculations based on a conventional numerical method as well as experimental measurements of the spectra and electric field intensity distributions of electromagnetic waveguides

    Business aspect

    Get PDF
    This chapter discusses the business requirements of technology to be developed in support of VEs. It first describes new business directions that have come into existence in the manufacturing industry like the automotive domain. Next, it treats new criteria that have to be met by industries to become or remain successful in new market situations. Finally, new business structures are discussed that (have to) emerge as a consequence of the new directions and criteria

    Climatologies of various OH lines from about 90,000 X‐shooter Spectra

    Get PDF
    The nocturnal mesopause region of the Earth's atmosphere radiates chemiluminescent emission from various roto-vibrational bands of hydroxyl (OH), which is therefore a good tracer of the chemistry and dynamics at the emission altitudes. Intensity variations can, for example, be caused by the general circulation, gravity waves, tides, planetary waves, and the solar activity. While the basic OH response to the different dynamical influences has been studied quite frequently, detailed comparisons of the various individual lines are still rare. Such studies can improve our understanding of the OH-related variations as each line shows a different emission profile. We have therefore used about 90,000 spectra of the X-shooter spectrograph of the Very Large Telescope at Cerro Paranal in Chile in order to study 10 years of variations of 298 OH lines. The analysis focuses on climatologies of intensity, solar cycle effect (SCE), and residual variability (especially with respect to time scales of hours and about 2 days) for day of year and local time. For a better understanding of the resulting variability patterns and the line-specific differences, we applied decomposition techniques, studied the variability depending on time scale, and calculated correlations. As a result, the mixing of thermalized and nonthermalized OH level populations clearly influences the amplitude of the variations. Moreover, the local times of the variability features shift depending on the effective line emission height, which can mainly be explained by the propagation of the migrating diurnal tide. This behavior also contributes to remarkable differences in the effective SCE

    Effective emission heights of various OH lines from X‐shooter and SABER observations of a passing quasi‐2‐day wave

    Get PDF
    Chemiluminescent radiation of the vibrationally and rotationally excited hydroxyl (OH) radical, which dominates the nighttime near-infrared emission of the Earth's atmosphere in wide wavelength regions, is an important tracer of the chemical and dynamical state of the mesopause region between 80 and 100 km. As radiative lifetimes and rate coefficients for collision-related transitions depend on the OH energy level, line-dependent emission profiles are expected. However, except for some height differences for whole bands mostly revealed by satellite-based measurements, there is a lack of data for individual lines. We succeeded in deriving effective emission heights for 298 OH lines thanks to the joint observation of a strong quasi-2-day wave (Q2DW) in eight nights in 2017 with the medium-resolution spectrograph X-shooter at the Very Large Telescope at Cerro Paranal in Chile and the limb-sounding SABER radiometer on the TIMED satellite. Our fitting procedure revealed the most convincing results for a single wave with a period of about 44 hr and a vertical wavelength of about 32 km. The line-dependent as well as altitude-resolved phases of the Q2DW then resulted in effective heights which differ by up to 8 km and tend to increase with increasing vibrational and rotation excitation. The measured dependence of emission heights and wave amplitudes (which were strongest after midnight) on the line parameters implies the presence of a cold thermalized and a hot non-thermalized population for each vibrational level

    Correlation between Fermi surface transformations and superconductivity in the electron-doped high-TcT_c superconductor Nd2−x_{2-x}Cex_xCuO4_4

    Full text link
    Two critical points have been revealed in the normal-state phase diagram of the electron-doped cuprate superconductor Nd2−x_{2-x}Cex_xCuO4_4 by exploring the Fermi surface properties of high quality single crystals by high-field magnetotransport. First, the quantitative analysis of the Shubnikov-de Haas effect shows that the weak superlattice potential responsible for the Fermi surface reconstruction in the overdoped regime extrapolates to zero at the doping level xc=0.175x_c = 0.175 corresponding to the onset of superconductivity. Second, the high-field Hall coefficient exhibits a sharp drop right below optimal doping xopt=0.145x_{\mathrm{opt}} = 0.145 where the superconducting transition temperature is maximum. This drop is most likely caused by the onset of long-range antiferromagnetic ordering. Thus, the superconducting dome appears to be pinned by two critical points to the normal state phase diagram.Comment: 9 pages; 7 figures; 1 tabl

    Molecular Aspects of Secretory Granule Exocytosis by Neurons and Endocrine Cells

    Get PDF
    Neuronal communication and endocrine signaling are fundamental for integrating the function of tissues and cells in the body. Hormones released by endocrine cells are transported to the target cells through the circulation. By contrast, transmitter release from neurons occurs at specialized intercellular junctions, the synapses. Nevertheless, the mechanisms by which signal molecules are synthesized, stored, and eventually secreted by neurons and endocrine cells are very similar. Neurons and endocrine cells have in common two different types of secretory organelles, indicating the presence of two distinct secretory pathways. The synaptic vesicles of neurons contain excitatory or inhibitory neurotransmitters, whereas the secretory granules (also referred to as dense core vesicles, because of their electron dense content) are filled with neuropeptides and amines. In endocrine cells, peptide hormones and amines predominate in secretory granules. The function and content of vesicles, which share antigens with synaptic vesicles, are unknown for most endocrine cells. However, in B cells of the pancreatic islet, these vesicles contain GABA, which may be involved in intrainsular signaling.' Exocytosis of both synaptic vesicles and secretory granules is controlled by cytoplasmic calcium. However, the precise mechanisms of the subsequent steps, such as docking of vesicles and fusion of their membranes with the plasma membrane, are still incompletely understood. This contribution summarizes recent observations that elucidate components in neurons and endocrine cells involved in exocytosis. Emphasis is put on the intracellular aspects of the release of secretory granules that recently have been analyzed in detail

    The solute transport and binding profile of a novel nucleobase cation symporter 2 from the honeybee pathogen Paenibacillus larvae

    Get PDF
    Here, we report that a novel nucleobase cation symporter 2 encoded in the genome of the honeybee bacterial pathogen Paenibacillus larvae reveals high levels of amino acid sequence similarity to the Escherichia coli and Bacillus subtilis uric acid and xanthine transporters. This transporter is named P. larvae uric acid permease-like protein (PlUacP). Even though PlUacP displays overall amino acid sequence similarities, has common secondary structures, and shares functional motifs and functionally important amino acids with E. coli xanthine and uric acid transporters, these commonalities are insufficient to assign transport function to PlUacP. The solute transport and binding profile of PlUacP was determined by radiolabeled uptake experiments via heterologous expression in nucleobase transporter-deficient Saccharomyces cerevisiae strains. PlUacP transports the purines adenine and guanine and the pyrimidine uracil. Hypoxanthine, xanthine, and cytosine are not transported by PlUacP, but, along with uric acid, bind in a competitive manner. PlUacP has strong affinity for adenine Km 7.04 ± 0.18 Όm, and as with other bacterial and plant NCS2 proteins, PlUacP function is inhibited by the proton disruptor carbonyl cyanide m-chlorophenylhydrazone. The solute transport and binding profile identifies PlUacP as a novel nucleobase transporter
    • 

    corecore