870 research outputs found

    Magnetic, thermal and transport properties of Cd doped CeIn3_3

    Full text link
    We have investigated the effect of Cd substitution on the archetypal heavy fermion antiferromagnet CeIn3_3 via magnetic susceptibility, specific heat and resistivity measurements. The suppression of the Neel temperature, TN_{N}, with Cd doping is more pronounced than with Sn. Nevertheless, a doping induced quantum critical point does not appear to be achievable in this system. The magnetic entropy at TNT_N and the temperature of the maximum in resistivity are also systematically suppressed with Cd, while the effective moment and the Curie-Weiss temperature in the paramagnetic state are not affected. These results suggest that Cd locally disrupts the AFM order on its neighboring Ce moments, without affecting the valence of Ce. Moreover, the temperature dependence of the specific heat below TNT_N is not consistent with 3D magnons in pure as well as in Cd-doped CeIn3_3, a point that has been missed in previous investigations of CeIn3_3 and that has bearing on the type of quantum criticality in this system

    Training-induced inversion of spontaneous exchange bias field on La1.5Ca0.5CoMnO6

    Full text link
    In this work we report the synthesis and structural, electronic and magnetic properties of La1.5Ca0.5CoMnO6 double-perovskite. This is a re-entrant spin cluster material which exhibits a non-negligible negative exchange bias effect when it is cooled in zero magnetic field from an unmagnetized state down to low temperature. X-ray powder diffraction, X-ray photoelectron spectroscopy and magnetometry results indicate mixed valence state at Co site, leading to competing magnetic phases and uncompensated spins at the magnetic interfaces. We compare the results for this Ca-doped material with those reported for the resemblant compound La1.5Sr0.5CoMnO6, and discuss the much smaller spontaneous exchange bias effect observed for the former in terms of its structural and magnetic particularities. For La1.5Ca0.5CoMnO6, when successive magnetization loops are carried, the spontaneous exchange bias field inverts its sign from negative to positive from the first to the second measurement. We discuss this behavior based on the disorder at the magnetic interfaces, related to the presence of a glassy phase. This compound also exhibits a large conventional exchange bias, for which there is no sign inversion of the exchange bias field for consecutive cycles

    Distinct high-T transitions in underdoped Ba1x_{1-x}Kx_{x}Fe2_{2}As2_{2}

    Get PDF
    In contrast to the simultaneous structural and magnetic first order phase transition T0T_{0} previously reported, our detailed investigation on an underdoped Ba0.84_{0.84}K0.16_{0.16}Fe2_{2}As2_{2} single crystal unambiguously revealed that the transitions are not concomitant. The tetragonal (τ\tau: I4/mmm) - orthorhombic (ϑ\vartheta: Fmmm) structural transition occurs at TST_{S}\simeq 110 K, followed by an adjacent antiferromagnetic (AFM) transition at TNT_{N}\simeq 102 K. Hysteresis and coexistence of the τ\tau and ϑ\vartheta phases over a finite temperature range observed in our NMR experiments confirm the first order character of the structural transition and provide evidence that both TST_{S} and TNT_{N} are strongly correlated. Our data also show that superconductivity (SC) develops in the ϑ\vartheta phase below TcT_{c} = 20 K and coexists with long range AFM. This new observation, TSTNT_{S}\neq T_{N}, firmly establishes another similarity between the hole-doped BaFe2_{2}As2_{2} via K substitution and the electron-doped iron-arsenide superconductors.Comment: 4 pages, 3 figure

    Compensation temperatures and exchange bias in La1.5Ca0.5CoIrO6

    Get PDF
    We report on the study of magnetic properties of the La1.5Ca0.5CoIrO6 double perovskite. Via ac magnetic susceptibility we have observed evidence of weak ferromagnetism and reentrant spin glass behavior on an antiferromagnetic matrix. Regarding the magnetic behavior as a function of temperature, we have found that the material displays up to three inversions of its magnetization, depending on the appropriate choice of the applied magnetic field. At low temperature the material exhibit exchange bias effect when it is cooled in the presence of a magnetic field. Also, our results indicate that this effect may be observed even when the system is cooled at zero field. Supported by other measurements and also by electronic structure calculations, we discuss the magnetic reversals and spontaneous exchange bias effect in terms of magnetic phase separation and magnetic frustration of Ir4+ ions located between the antiferromagnetically coupled Co ions.Comment: 10 pages, 8 figures and supplemental materia

    Pressure and chemical substitution effects in the local atomic structure of BaFe2As2

    Get PDF
    The effects of K and Co substitutions and quasi-hydrostatic applied pressure (P<9 GPa) in the local atomic structure of BaFe2As2, Ba(Fe{0.937}Co{0.063})2As2 and Ba{0.85}K{0.15}Fe2As2 superconductors were investigated by extended x-ray absorption fine structure (EXAFS) measurements in the As K absorption edge. The As-Fe bond length is found to be slightly reduced (<~ 0.01 Angstroms) by both Co and K substitutions, without any observable increment in the corresponding Debye Waller factor. Also, this bond is shown to be compressible (k = 3.3(3)x10^{-3} GPa^{-1}). The observed contractions of As-Fe bond under pressure and chemical substitutions are likely related with a reduction of the local Fe magnetic moments, and should be an important tuning parameter in the phase diagrams of the Fe-based superconductors.Comment: 7 pages, 6 figure

    Single phase nanocrystalline GaMnN thin films with high Mn content

    No full text
    Ga₁ˍₓ Mnₓ Nthin films with a Mn content as high as x=0.18 have been grown using ion-assisted deposition and a combination of Rutherford backscattering spectroscopy and nuclear reaction analysis was used to determine their composition. The structure of the films was determined from x-ray diffraction,transmission electron microscopy, and extended x-ray absorption fine structure(EXAFS). The films are comprised of nanocrystals of random stacked GaMnN and there is no evidence of Mn-rich secondary phases or clusters. EXAFS measurements at the Mn and Ga edge are almost identical to those at the Ga edge from Mn-free nanocrystallineGaNfilms, showing that the Mn occupies the Ga lattice sites, and simulated radial distribution functions of possible Mn-rich impurity phases bear no resemblance to the experimental data. The results indicate that these are the most heavily Mn-doped single phase GaNfilms studied to date.The authors gratefully acknowledge financial support from the New Zealand Foundation for Research Science and Technology through its New Economy Research Fund, and through a postdoctoral fellowship of one of the authors B.J.R.. The work of the MacDiarmid Institute is supported by a New Zealand Centre of Research Excellence award. Another author S.G. wishes to thank Education New Zealand for financial support of the EXAFS measurements
    corecore