368 research outputs found

    Abelian Yang-Mills theory on Real tori and Theta divisors of Klein surfaces

    Full text link
    The purpose of this paper is to compute determinant index bundles of certain families of Real Dirac type operators on Klein surfaces as elements in the corresponding Grothendieck group of Real line bundles in the sense of Atiyah. On a Klein surface these determinant index bundles have a natural holomorphic description as theta line bundles. In particular we compute the first Stiefel-Whitney classes of the corresponding fixed point bundles on the real part of the Picard torus. The computation of these classes is important, because they control to a large extent the orientability of certain moduli spaces in Real gauge theory and Real algebraic geometry.Comment: LaTeX, 44 pages, to appear in Comm. Math. Phy

    Gravitational Chern-Simons and the adiabatic limit

    Full text link
    We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasi-regular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed in a paper of Guralnik, Iorio, Jackiw and Pi (2003), although not in the adiabatic context.Comment: 17 page

    Sufficient stochastic maximum principle in a regime-switching diffusion model

    Get PDF
    We prove a sufficient stochastic maximum principle for the optimal control of a regime-switching diffusion model. We show the connection to dynamic programming and we apply the result to a quadratic loss minimization problem, which can be used to solve a mean-variance portfolio selection problem

    Szeg\"o kernel asymptotics and Morse inequalities on CR manifolds

    Full text link
    We consider an abstract compact orientable Cauchy-Riemann manifold endowed with a Cauchy-Riemann complex line bundle. We assume that the manifold satisfies condition Y(q) everywhere. In this paper we obtain a scaling upper-bound for the Szeg\"o kernel on (0, q)-forms with values in the high tensor powers of the line bundle. This gives after integration weak Morse inequalities, analogues of the holomorphic Morse inequalities of Demailly. By a refined spectral analysis we obtain also strong Morse inequalities which we apply to the embedding of some convex-concave manifolds.Comment: 40 pages, the constants in Theorems 1.1-1.8 have been modified by a multiplicative constant 1/2 ; v.2 is a final updat

    The differential analytic index in Simons-Sullivan differential K-theory

    Full text link
    We define the Simons-Sullivan differential analytic index by translating the Freed-Lott differential analytic index via explicit ring isomorphisms between Freed-Lott differential K-theory and Simons-Sullivan differential K-theory. We prove the differential Grothendieck-Riemann-Roch theorem in Simons-Sullivan differential K-theory using a theorem of Bismut.Comment: 14 pages. Comments are welcome. Final version. To appear in Annals of Global Analysis and Geometr

    Vector Bundle Moduli Superpotentials in Heterotic Superstrings and M-Theory

    Get PDF
    The non-perturbative superpotential generated by a heterotic superstring wrapped once around a genus-zero holomorphic curve is proportional to the Pfaffian involving the determinant of a Dirac operator on this curve. We show that the space of zero modes of this Dirac operator is the kernel of a linear mapping that is dependent on the associated vector bundle moduli. By explicitly computing the determinant of this map, one can deduce whether or not the dimension of the space of zero modes vanishes. It is shown that this information is sufficient to completely determine the Pfaffian and, hence, the non-perturbative superpotential as explicit holomorphic functions of the vector bundle moduli. This method is illustrated by a number of non-trivial examples.Comment: 81 pages, LaTeX, corrected typo

    Exact Path Integrals by Equivariant Cohomology

    Full text link
    It is a common belief among field theorists that path integrals can be computed exactly only in a limited number of special cases, and that most of these cases are already known. However recent developments, which generalize the WKBJ method using equivariant cohomology, appear to contradict this folk wisdom. At the formal level, equivariant localization would seem to allow exact computation of phase space path integrals for an arbitrary partition function! To see how, and if, these methods really work in practice, we have applied them in explicit quantum mechanics examples. We show that the path integral for the 1-d hydrogen atom, which is not WKBJ exact, is localizable and computable using the more general formalism. We find however considerable ambiguities in this approach, which we can only partially resolve. In addition, we find a large class of quantum mechanics examples where the localization procedure breaks down completely.Comment: LATE

    L^2 torsion without the determinant class condition and extended L^2 cohomology

    Full text link
    We associate determinant lines to objects of the extended abelian category built out of a von Neumann category with a trace. Using this we suggest constructions of the combinatorial and the analytic L^2 torsions which, unlike the work of the previous authors, requires no additional assumptions; in particular we do not impose the determinant class condition. The resulting torsions are elements of the determinant line of the extended L^2 cohomology. Under the determinant class assumption the L^2 torsions of this paper specialize to the invariants studied in our previous work. Applying a recent theorem of D. Burghelea, L. Friedlander and T. Kappeler we obtain a Cheeger - Muller type theorem stating the equality between the combinatorial and the analytic L^2 torsions.Comment: 39 page

    The Hitchin functionals and the topological B-model at one loop

    Full text link
    The quantization in quadratic order of the Hitchin functional, which defines by critical points a Calabi-Yau structure on a six-dimensional manifold, is performed. The conjectured relation between the topological B-model and the Hitchin functional is studied at one loop. It is found that the genus one free energy of the topological B-model disagrees with the one-loop free energy of the minimal Hitchin functional. However, the topological B-model does agree at one-loop order with the extended Hitchin functional, which also defines by critical points a generalized Calabi-Yau structure. The dependence of the one-loop result on a background metric is studied, and a gravitational anomaly is found for both the B-model and the extended Hitchin model. The anomaly reduces to a volume-dependent factor if one computes for only Ricci-flat Kahler metrics.Comment: 33 pages, LaTe

    Families index theorem in supersymmetric WZW model and twisted K-theory: The SU(2) case

    Full text link
    The construction of twisted K-theory classes on a compact Lie group is reviewed using the supersymmetric Wess-Zumino-Witten model on a cylinder. The Quillen superconnection is introduced for a family of supercharges parametrized by a compact Lie group and the Chern character is explicitly computed in the case of SU(2). For large euclidean time, the character form is localized on a D-brane.Comment: Version 2: Essentially simplified proof of the main result using a map from twisted K-theory to gerbes modulo the twisting gerbe; references added + minor correction
    corecore