5 research outputs found

    Etudes structurales de la famille des protéines Roundabout

    No full text
    Neuronal and vascular systems require a complex network to properly perform their functions. The processes involved in creating this network rely on coordinated pathways, often activated through common protein/receptor systems, which lead to cytoskeletal remodelling. In general, neuronal and vascular cells respond to extracellular stimuli in the form of soluble secreted proteins, which interact with surface receptors to mediate attraction or repulsion towards the source of the secreted proteins. This process, called guidance, is regulated by seven families of receptors and their respective ligands, which influence each other and can act on the neuronal system, the vascular system or both.Structural information about the extracellular region of many of these receptors, and how signal is relayed across the membrane, is lacking.This study is focused around the extracellular domain of two single-pass transmembrane receptors of the Roundabout and UNC5 protein families that are majorly involved in angiogenesis: Robo4 and UNC5B.Based on the findings of this study, the Robo4 and UNC5B extracellular domains are extensively glycosylated with N-linked glycans of the complex type. Site-directed mutagenesis of the predicted Robo4 glycosylation sites disrupts protein expression, indicating that they are necessary for protein stability and passage through the glycosylation pathway might be necessary for correct folding. MALS and SAXS data show that in solution the Robo4 extracellular domain is a flexible monomer with extended shape. Several Fabs binding to the extracellular domain of Robo4 were characterised, with the expectation to identify those Fabs that could inhibit the reported Robo4/UNC5B interaction for further characterisation. Complex formation was verified by SEC-MALS and SAXS, and interaction constants were determined using SPR. Crystals of some Robo4 extracellular domain/Fab complexes were produced, although the structure of the complex could not be solved at the present time.Despite a study by another group showing otherwise, pull-down, SEC-MALS and SPR experiments show that the Robo4 and UNC5B extracellular domains do not interact with each other. It is proposed that the difference may be caused by different glycosylation patterns specific to the cell lines used for each study, or by an undetected third party necessary for interaction. This, however, still requires further study. SEC-MALS analysis showed that the UNC5B extracellular domain is a monomer in solution and its crystal structure was solved at 3.4 Å resolution. Comparison to the existing structures of human UNC5A and rat UNC5D shows striking similarities and a high degree of evolutionary conservation of the Ig domains might be indication of the importance of this region, which is responsible for binding to the guidance cue Netrin. Although the Netrin binding region is known to be within the Ig domains, the precise binding site has not yet been determined, but it might be located in proximity, or within, the negatively charged surfaces present on the Ig domains which are observed in the UNC5B structure.It is hoped that the work presented here will give the basis for better biochemical and structural characterisation of these two receptors.Les systèmes neuronaux et vasculaires nécessitent un réseau complexe pour exécuter correctement leurs fonctions. Les processus impliqués dans la création de ce réseau s'appuient sur des voies coordonnées, souvent activées par des systèmes protéine/récepteur communs, qui conduisent au remodelage du cytosquelette.En général, les cellules neuronales et vasculaires répondent aux stimuli extracellulaires sous forme de protéines solubles sécrétées, qui interagissent avec les récepteurs de surface pour favoriser l'attraction ou la répulsion vers la source des protéines sécrétées. Ce processus, appelé guidage, est régulé par sept familles de récepteurs et leurs ligands respectifs, qui s'influencent les uns sur les autres et peuvent agir sur le système neuronal, le système vasculaire ou les deux ensembles.Cette étude est centrée sur deux récepteurs transmembranaires à passage unique, les membres des familles de protéines Roundabout et UNC5 qui sont principalement impliquées dans l'angiogenèse: Robo4 et UNC5B.L'information structurelle sur la région extracellulaire de plusieurs de ces récepteurs, et comment le signal est relayé à travers la membrane, fait défaut.La déglycosylation enzymatique a confirmé que les domaines extracellulaires de Robo4 et UNC5B sont largement glycosylés avec des glycanes liés en azote du complexe type. La mutagenèse dirigée des sites de glycosylation prédits de Robo4 perturbe son expression, indiquant que ces résidus sont nécessaires pour la stabilité de la protéine et que leur glycosylation, ou leur passage dans la voie de glycosylation, pourrait être nécessaire pour un repliement correct. Les données MALS et SAXS montrent qu'en solution, Robo4 ecto est un monomère flexible de forme allongée. Les domaines ne présentent pas des caractéristiques distinctes dans le modèle construit à partir des données SAXS. Plusieurs Fabs se liant au domaine extracellulaire de Robo4 ont été caractérisés, avec l'espoir d'identifier les Fab qui pourraient inhiber l'interaction Robo4 / UNC5B rapportée pour une caractérisation plus poussée. La formation du complexe a été vérifiée par SEC-MALS et SAXS, et les constantes d'interaction ont été déterminées en utilisant SPR. Des cristaux de certains complexes domaine Fab / domaine extracellulaire Robo4 ont été produits, bien que la structure du complexe n'ait pas pu être résolue à l'heure actuelle.Les expériences de pull-down, SEC-MALS et SPR montrent que Robo4 ecto et UNC5B ecto n'interagissent pas entre elles, malgré une étude par un autre groupe montrant le contraire. Étant donné que différentes lignées cellulaires ont été utilisées, des modèles de glycosylation spécifiques, ou une tierce partie non détectée, pourraient être nécessaires pour l'interaction. En raison de leur implication avec les récepteurs extracellulaires, les héparanes sulfates sont un candidat probable, mais d'autres partenaires devraient être envisagés.La structure cristallographique de l'UNC5B ecto est similaire aux structures existantes de UNC5A et UNC5D. Le haut degré de conservation des domaines del’Ig pourrait être une indication de l'importance de cette région, qui est responsable de la liaison à Netrin. Bien que la région de liaison de Netrin soit connue pour être dans les domaines Ig, le site de liaison précis n'a pas encore été déterminé, mais il pourrait être situé à proximité ou à l'intérieur des surfaces chargées négativement présentes sur les domaines Ig observées dans la structure d’UNC5B.Le travail présenté ici devrait servir de base à une meilleure caractérisation biochimique et structurale des récepteurs extracellulaires Robo4 et UNC5B

    Structural variations between small alarmone hydrolase dimers support different modes of regulation of the stringent response

    No full text
    The bacterial stringent response involves wide-ranging metabolic reprogramming aimed at increasing long-term survivability during stress conditions. One of the hallmarks of the stringent response is the production of a set of modified nucleotides, known as alarmones, which affect a multitude of cellular pathways in diverse ways. Production and degradation of these molecules depend on the activity of enzymes from the RelA/SpoT homologous family, which come in both bifunctional (containing domains to both synthesize and hydrolyze alarmones) and monofunctional (consisting of only synthetase or hydrolase domain) variants, of which the structure, activity, and regulation of the bifunctional RelA/SpoT homologs have been studied most intensely. Despite playing an important role in guanosine nucleotide homeostasis in particular, mechanisms of regulation of the small alarmone hydrolases (SAHs) are still rather unclear. Here, we present crystal structures of SAH enzymes from Corynebacterium glutamicum (RelHCg_{Cg}) and Leptospira levettii (RelHLl_{Ll}) and show that while being highly similar, structural differences in substrate access and dimer conformations might be important for regulating their activity. We propose that a varied dimer form is a general property of the SAH family, based on current structural information as well as prediction models for this class of enzymes. Finally, subtle structural variations between monofunctional and bifunctional enzymes point to how these different classes of enzymes are regulated

    Structural variations between small alarmone hydrolase dimers support different modes of regulation of the stringent response

    No full text
    The bacterial stringent response involves wide-ranging metabolic reprogramming aimed at increasing long-term survivability during stress conditions. One of the hallmarks of the stringent response is the production of a set of modified nucleotides, known as alarmones, which affect a multitude of cellular pathways in diverse ways. Production and degradation of these molecules depend on the activity of enzymes from the RelA/SpoT homologous family, which come in both bifunctional (containing domains to both synthesize and hydrolyze alarmones) and monofunctional (consisting of only synthetase or hydrolase domain) variants, of which the structure, activity, and regulation of the bifunctional RelA/SpoT homologs have been studied most intensely. Despite playing an important role in guanosine nucleotide homeostasis in particular, mechanisms of regulation of the small alarmone hydrolases (SAHs) are still rather unclear. Here, we present crystal structures of SAH enzymes from Corynebacterium glutamicum (RelH(Cg)) and Leptospira levettii (RelH(Ll)) and show that while being highly similar, structural differences in substrate access and dimer conformations might be important for regulating their activity. We propose that a varied dimer form is a general property of the SAH family, based on current structural information as well as prediction models for this class of enzymes. Finally, subtle structural variations between monofunctional and bifunctional enzymes point to how these different classes of enzymes are regulated

    Structural Basis for Toxin Inhibition in the VapXD Toxin-Antitoxin System

    No full text
    Bacterial type II toxin-antitoxin (TA) modules encode a toxic protein that downregulates metabolism and a specific antitoxin that binds and inhibits the toxin during normal growth. In non-typeable Haemophilus influenzae, a common cause of infections in humans, the vapXD locus was found to constitute a functional TA module and contribute to pathogenicity; however, the mode of action of VapD and the mechanism of inhibition by the VapX antitoxin remain unknown. Here, we report the structure of the intact H. influenzae VapXD complex, revealing an unusual 2:1 TA molecular stoichiometry where a Cas2-like homodimer of VapD binds a single VapX antitoxin. VapX consists of an oligonucleotide/oligosaccharide-binding domain that docks into an asymmetrical cavity on the toxin dimer. Structures of isolated VapD further reveal how a symmetrical toxin homodimer adapts to interacting with an asymmetrical antitoxin and suggest how a primordial TA system evolved to become part of CRISPR-Cas immunity systems

    Structural basis for kinase inhibition in the tripartite E. coli HipBST toxin–antitoxin system

    No full text
    Many bacteria encode multiple toxin–antitoxin (TA) systems targeting separate, but closely related, cellular functions. The toxin of the Escherichia coli hipBA system, HipA, is a kinase that inhibits translation via phosphorylation of glutamyl-tRNA synthetase. Enteropathogenic E. coli O127:H6 encodes the hipBA-like, tripartite TA system; hipBST, in which the HipT toxin specifically targets the tryptophanyl-tRNA synthetase, TrpS. Notably, in the tripartite system, the function as antitoxin has been taken over by the third protein, HipS, but the molecular details of how activity of HipT is inhibited remain poorly understood. Here, we show that HipBST is structurally different from E. coli HipBA and that the unique HipS protein, which is homologous to the N-terminal subdomain of HipA, inhibits the kinase through insertion of a conserved Trp residue into the active site. We also show how auto-phosphorylation at two conserved sites in the kinase toxin serve different roles and affect the ability of HipS to neutralize HipT. Finally, solution structural studies show how phosphorylation affects overall TA complex flexibility
    corecore