159 research outputs found
The cost of breast cancer recurrences.
Information about the costs of recurrent breast cancer is potentially important for targeting cost containment strategies and analysing the cost-effectiveness of breast cancer control programmes. We estimated these costs by abstracting health service and consumable usage data from the medical histories of 128 patients, and valuing each of the resources used. Resource usage and costs were summarised by regarding the recurrence as a series of episodes which were categorised into five anatomical site-based groups according to the following hierarchy: visceral, central nervous system (CNS), bone, local and other. Hospital visits and investigations comprised 78% of total costs for all episodes combined, and there were significant differences between the site-based groups in the frequency of hospital visits and most investigations. Total costs were most accurately described by separate linear regression models for each group, with the natural logarithm of the cost of the episode as the dependent variable, and predictor variables including the duration of the episode, duration squared, duration cubed and a variable indicating whether the episode was fatal. Visceral and CNS episodes were associated with higher costs than the other groups and were more likely to be shorter and fatal. A fatal recurrence of duration 15.7 months (the median for our sample) was predicted to cost $10,575 (Aus + 1988; or 4,877 pounds). Reduction of the substantial costs of recurrent breast cancer is likely to be a sizable economic benefit of adjuvant systemic therapy and mammographic screening. We did not identify any major opportunities for cost containment during the management of recurrences
Fungal Planet description sheets: 1436–1477
Novel species of fungi described in this study include those from various countries as follows: Argentina, Colletotrichum araujiae on leaves, stems and fruits of Araujia hortorum. Australia, Agaricus pateritonsus on soil, Curvularia fraserae on dying leaf of Bothriochloa insculpta, Curvularia millisiae from yellowing leaf tips of Cyperus aromaticus, Marasmius brunneolorobustus on well-rotted wood, Nigrospora cooperae from necrotic leaf of Heteropogon contortus, Penicillium tealii from the body of a dead spider, Pseudocercospora robertsiorum from leaf spots of Senna tora, Talaromyces atkinsoniae from gills of Marasmius crinis-equi and Zasmidium pearceae from leaf spots of Smilax glyciphylla. Brazil, Preussia bezerrensis from air. Chile, Paraconiothyrium kelleni from the rhizosphere of Fragaria chiloensis subsp. chiloensis f. chiloensis. Finland, Inocybe udicola on soil in mixed forest with Betula pendula, Populus tremula, Picea abies and Alnus incana. France, Myrmecridium normannianum on dead culm of unidentified Poaceae. Germany, Vexillomyces fraxinicola from symptomless stem wood of Fraxinus excelsior. India, Diaporthe limoniae on infected fruit of Limonia acidissima, Didymella naikii on leaves of Cajanus cajan, and Fulvifomes mangroviensis on basal trunk of Aegiceras corniculatum. Indonesia, Penicillium ezekielii from Zea mays kernels. Namibia, Neocamarosporium calicoremae and Neocladosporium calicoremae on stems of Calicorema capitata, and Pleiochaeta adenolobi on symptomatic leaves of Adenolobus pechuelii. Netherlands, Chalara pteridii on stems of Pteridium aquilinum, Neomackenziella juncicola (incl. Neomackenziella gen. nov.) and Sporidesmiella junci from dead culms of Juncus effusus. Pakistan, Inocybe longistipitata on soil in a Quercus forest. Poland, Phytophthora viadrina from rhizosphere soil of Quercus robur, and Septoria krystynae on leaf spots of Viscum album. Portugal (Azores), Acrogenospora stellata on dead wood or bark. South Africa, Phyllactinia greyiae on leaves of Greyia sutherlandii and Punctelia anae on bark of Vachellia karroo. Spain, Anteaglonium lusitanicum on decaying wood of Prunus lusitanica subsp. lusitanica, Hawksworthiomyces riparius from fluvial sediments, Lophiostoma carabassense endophytic in roots of Limbarda crithmoides, and Tuber mohedanoi from calcareus soils. Spain (Canary Islands), Mycena laurisilvae on stumps and woody debris. Sweden, Elaphomyces geminus from soil under Quercus robur. Thailand, Lactifluus chiangraiensis on soil under Pinus merkusii, Lactifluus nakhonphanomensis and Xerocomus sisongkhramensis on soil under Dipterocarpus trees. Ukraine, Valsonectria robiniae on dead twigs of Robinia hispida. USA, Spiralomyces americanus (incl. Spiralomyces gen. nov.) from office air. Morphological and culture characteristics are supported by DNA barcodes
Continuous and Long-Term Volume Measurements with a Commercial Coulter Counter
We demonstrate a method to enhance the time resolution of a commercial Coulter counter and enable continuous and long-term cell size measurements for growth rate analyses essential to understanding basic cellular processes, such as cell size regulation and cell cycle progression. Our simple modifications to a commercial Coulter counter create controllable cell culture conditions within the sample compartment and combine temperature control with necessary adaptations to achieve measurement stability over several hours. We also wrote custom software, detailed here, to analyze instrument data files collected by either this continuous method or standard, periodic sampling. We use the continuous method to measure the growth rate of yeast in G1 during a prolonged arrest and, in different samples, the dependency of growth rate on cell size and cell cycle position in arrested and proliferating cells. We also quantify with high time resolution the response of mouse lymphoblast cell culture to drug treatment. This method provides a technique for continuous measurement of cell size that is applicable to a large variety of cell types and greatly expands the set of analysis tools available for the Coulter counter.National Institutes of Health (U.S.) (EUREKA Exceptional, Unconventional Research Enabling Knowledge Acceleration (R01GM085457))National Institutes of Health (U.S.) (contract R21CA137695)National Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874
Functional Interchangeability of Late Domains, Late Domain Cofactors and Ubiquitin in Viral Budding
The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L-) domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1). It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV), where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed
Pragmatic Language and School Related Linguistic Abilities in Siblings of Children with Autism
Siblings of probands with autism spectrum disorders are at higher risk for developing the broad autism phenotype (BAP). We compared the linguistic abilities (i.e., pragmatic language, school achievements, and underling reading processes) of 35 school-age siblings of children with autism (SIBS-A) to those of 42 siblings of children with typical development. Results indicated lower pragmatic abilities in a subgroup of SIBS-A identified with BAP related difficulties (SIBS-A-BAP) whereas school achievements and reading processes were intact. Furthermore, among SIBS-A-BAP, significant negative correlations emerged between the severity scores on the Autism Diagnostic Observation Schedule and full and verbal IQ scores. These results are discussed in the context of the developmental trajectories of SIBS-A and in relation to the BAP
MVB-12, a Fourth Subunit of Metazoan ESCRT-I, Functions in Receptor Downregulation
After ligand binding and endocytosis, cell surface receptors can continue to signal from endosomal compartments until sequestered from the cytoplasm. An important mechanism for receptor downregulation in vivo is via the inward budding of receptors into intralumenal vesicles to form specialized endosomes called multivesicular bodies (MVBs) that subsequently fuse with lysosomes, degrading their cargo. This process requires four heterooligomeric protein complexes collectively termed the ESCRT machinery. In yeast, ESCRT-I is a heterotetrameric complex comprised of three conserved subunits and a fourth subunit for which identifiable metazoan homologs were lacking. Using C. elegans, we identify MVB-12, a fourth metazoan ESCRT-I subunit. Depletion of MVB-12 slows the kinetics of receptor downregulation in vivo, but to a lesser extent than inhibition of other ESCRT-I subunits. Consistent with these findings, targeting of MVB-12 to membranes requires the other ESCRT-I subunits, but MVB-12 is not required to target the remaining ESCRT-I components. Both endogenous and recombinant ESCRT-I are stable complexes with a 1:1:1:1 subunit stoichiometry. MVB-12 has two human homologs that co-localize and co-immunoprecipitate with the ESCRT-I component TSG101. Thus, MVB-12 is a conserved core component of metazoan ESCRT-I that regulates its activity during MVB biogenesis
Developmental Trajectories in Siblings of Children with Autism: Cognition and Language from 4 Months to 7 Years
We compared the cognitive and language development at 4, 14, 24, 36, 54 months, and 7 years of siblings of children with autism (SIBS-A) to that of siblings of children with typical development (SIBS-TD) using growth curve analyses. At 7 years, 40% of the SIBS-A, compared to 16% of SIBS-TD, were identified with cognitive, language and/or academic difficulties, identified using direct tests and/or parental reports. This sub-group was identified as SIBS-A-broad phenotype (BP). Results indicated that early language scores (14–54 months), but not cognitive scores of SIBS-A-BP and SIBS-A-nonBP were significantly lower compared to the language scores of SIBS-TD, and that the rate of development was also significantly different, thus pinpointing language as a major area of difficulty for SIBS-A during the preschool years
Localization of a Guanylyl Cyclase to Chemosensory Cilia Requires the Novel Ciliary MYND Domain Protein DAF-25
In harsh conditions, Caenorhabditis elegans arrests development to enter a non-aging, resistant diapause state called the dauer larva. Olfactory sensation modulates the TGF-β and insulin signaling pathways to control this developmental decision. Four mutant alleles of daf-25 (abnormal DAuer Formation) were isolated from screens for mutants exhibiting constitutive dauer formation and found to be defective in olfaction. The daf-25 dauer phenotype is suppressed by daf-10/IFT122 mutations (which disrupt ciliogenesis), but not by daf-6/PTCHD3 mutations (which prevent environmental exposure of sensory cilia), implying that DAF-25 functions in the cilia themselves. daf-25 encodes the C. elegans ortholog of mammalian Ankmy2, a MYND domain protein of unknown function. Disruption of DAF-25, which localizes to sensory cilia, produces no apparent cilia structure anomalies, as determined by light and electron microscopy. Hinting at its potential function, the dauer phenotype, epistatic order, and expression profile of daf-25 are similar to daf-11, which encodes a cilium-localized guanylyl cyclase. Indeed, we demonstrate that DAF-25 is required for proper DAF-11 ciliary localization. Furthermore, the functional interaction is evolutionarily conserved, as mouse Ankmy2 interacts with guanylyl cyclase GC1 from ciliary photoreceptors. The interaction may be specific because daf-25 mutants have normally-localized OSM-9/TRPV4, TAX-4/CNGA1, CHE-2/IFT80, CHE-11/IFT140, CHE-13/IFT57, BBS-8, OSM-5/IFT88, and XBX-1/D2LIC in the cilia. Intraflagellar transport (IFT) (required to build cilia) is not defective in daf-25 mutants, although the ciliary localization of DAF-25 itself is influenced in che-11 mutants, which are defective in retrograde IFT. In summary, we have discovered a novel ciliary protein that plays an important role in cGMP signaling by localizing a guanylyl cyclase to the sensory organelle
- …