8 research outputs found
Consensus guidelines for the use and interpretation of angiogenesis assays
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference
Current and Emerging 3D Models to Study Breast Cancer
For decades 2D culture has been used to study breast cancer. In recent years, however, the importance of 3D culture to recapitulate the complexity of human disease has received attention. A breakthrough for 3D culture came as a result of a Nature editorial ‘Goodbye Flat Biology’ (Anonymous, Nature 424:861–861, 2003). Since then scientists have developed and implemented a range of different and more clinically relevant models, which are used to study breast cancer. In this chapter multiple different 3D models will be discussed including spheroids, microfluidic and bio-printed models and in silico models
Engineering patient-on-a-chip models for personalized cancer medicine
Traditional in vitro and in vivo models typically used in cancer research have demonstrated a low predictive power for human response. This leads to high attrition rates of new drugs in clinical trials, which threaten cancer patient prognosis. Tremendous efforts have been directed towards the development of a new generation of highly predictable preclinical models capable to reproduce in vitro the biological complexity of the human body. Recent advances in nanotechnology and tissue engineering have enabled the development of predictive organs-on-a-chip models of cancer with advanced capabilities. These models can reproduce in vitro the complex three-dimensional physiology and interactions that occur between organs and tissues in vivo, offering multiple advantages when compared to traditional models. Importantly, these models can be tailored to the biological complexity of individual cancer patients resulting into biomimetic and personalized cancer patient-on-a-chip platforms. The individualized models provide a more accurate and physiological environment to predict tumor progression on patients and their response to drugs. In this chapter, we describe the latest advances in the field of cancer patient-on-a-chip, and discuss about their main applications and current challenges. Overall, we anticipate that this new paradigm in cancer in vitro models may open up new avenues in the field of personalized â cancer â medicine, which may allow pharmaceutical companies to develop more efficient drugs, and clinicians to apply patient-specific therapies. The authors acknowledge the financial support from the European Union Framework Programme for Research and Innovation Horizon 2020 on Forefront Research in 3D Disease Cancer Models as in vitro Screening Technologies (FoReCaST) under grant agreement no. 668983. D.C. and S.C.K also acknowledge the support from the Portuguese Foundation for Science and Technology (FCT) under the scope of the project Modelling Cancer Metastasis into the Human Microcirculation System using a Multiorgan-on-a-Chip Approach (2MATCH) (02/SAICT/2017 – n° 028070) funded by the Programa Operacional Regional do Norte supported by FEDER. Conflicts of interest: none