12 research outputs found

    Familial hemiplegic migraine CaV2.1 channel mutation R192Q enhances ATP-gated P2X3 receptor activity of mouse sensory ganglion neurons mediating trigeminal pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The R192Q mutation of the CACNA1A gene, encoding for the α1 subunit of voltage-gated P/Q Ca<sup>2+ </sup>channels (Ca<sub>v</sub>2.1), is associated with familial hemiplegic migraine-1. We investigated whether this gain-of-function mutation changed the structure and function of trigeminal neuron P2X<sub>3 </sub>receptors that are thought to be important contributors to migraine pain.</p> <p>Results</p> <p>Using in vitro trigeminal sensory neurons of a mouse genetic model knockin for the CACNA1A R192Q mutation, we performed patch clamp recording and intracellular Ca<sup>2+ </sup>imaging that showed how these knockin ganglion neurons generated P2X<sub>3 </sub>receptor-mediated responses significantly larger than wt neurons. These enhanced effects were reversed by the Ca<sub>v</sub>2.1 blocker ω-agatoxin. We, thus, explored intracellular signalling dependent on kinases and phosphatases to understand the molecular regulation of P2X<sub>3 </sub>receptors of knockin neurons. In such cells we observed strong activation of CaMKII reversed by ω-agatoxin treatment. The CaMKII inhibitor KN-93 blocked CaMKII phosphorylation and the hyperesponsive P2X<sub>3 </sub>phenotype. Although no significant difference in membrane expression of knockin receptors was found, serine phosphorylation of knockin P2X<sub>3 </sub>receptors was constitutively decreased and restored by KN-93. No change in threonine or tyrosine phosphorylation was detected. Finally, pharmacological inhibitors of the phosphatase calcineurin normalized the enhanced P2X<sub>3 </sub>receptor responses of knockin neurons and increased their serine phosphorylation.</p> <p>Conclusions</p> <p>The present results suggest that the CACNA1A mutation conferred a novel molecular phenotype to P2X<sub>3 </sub>receptors of trigeminal ganglion neurons via CaMKII-dependent activation of calcineurin that selectively impaired the serine phosphorylation state of such receptors, thus potentiating their effects in transducing trigeminal nociception.</p

    Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution

    Get PDF
    In the current model of mitochondrial trafficking, Miro1 and Miro2 Rho-GTPases regulate mitochondrial transport along microtubules by linking mitochondria to kinesin and dynein motors. By generating Miro1/2 double-knockout mouse embryos and single- and double-knockout embryonic fibroblasts, we demonstrate the essential and non-redundant roles of Miro proteins for embryonic development and subcellular mitochondrial distribution. Unexpectedly, the TRAK1 and TRAK2 motor protein adaptors can still localise to the outer mitochondrial membrane to drive anterograde mitochondrial motility in Miro1/2 double-knockout cells. In contrast, we show that TRAK2-mediated retrograde mitochondrial transport is Miro1-dependent. Interestingly, we find that Miro is critical for recruiting and stabilising the mitochondrial myosin Myo19 on the mitochondria for coupling mitochondria to the actin cytoskeleton. Moreover, Miro depletion during PINK1/Parkin-dependent mitophagy can also drive a loss of mitochondrial Myo19 upon mitochondrial damage. Finally, aberrant positioning of mitochondria in Miro1/2 double-knockout cells leads to disruption of correct mitochondrial segregation during mitosis. Thus, Miro proteins can fine-tune actin- and tubulin-dependent mitochondrial motility and positioning, to regulate key cellular functions such as cell proliferation

    Mice with endogenous TDP-43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis

    Get PDF
    TDP-43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP-43 function at physiological levels both in vitro and in vivo Interestingly, we find that mutations within the C-terminal domain of TDP-43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP-43 loss- and gain-of-function effects. TDP-43 gain-of-function effects in these mice reveal a novel category of splicing events controlled by TDP-43, referred to as "skiptic" exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain-of-function mutation in endogenous Tardbp causes an adult-onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain-of-function and skiptic exons in ALS patient-derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP-43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages

    FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention

    Get PDF
    Mutations in the RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease. FUS plays a role in numerous aspects of RNA metabolism, including mRNA splicing. However, the impact of ALS-causative mutations on splicing has not been fully characterized, as most disease models have been based on overexpressing mutant FUS, which will alter RNA processing due to FUS autoregulation. We and others have recently created knockin models that overcome the overexpression problem, and have generated high depth RNA-sequencing on FUS mutants in parallel to FUS knockout, allowing us to compare mutation-induced changes to genuine loss of function. We find that FUS-ALS mutations induce a wide spread loss of function on expression and splicing. Specifically, we find that mutant FUS directly alters intron retention levels in RNA-binding proteins. Moreover, we identify an intron retention event in FUS itself that is associated with its autoregulation. Altered FUS levels have been linked to disease, and we show here that this novel autoregulation mechanism is altered by FUS mutations. Crucially, we also observe this phenomenon in other genetic forms of ALS, including those caused by TDP-43, VCP and SOD1 mutations, supporting the concept that multiple ALS genes interact in a regulatory network

    The C-terminal Src Inhibitory Kinase (Csk)-mediated Tyrosine Phosphorylation Is a Novel Molecular Mechanism to Limit P2X3 Receptor Function in Mouse Sensory Neurons*

    No full text
    On sensory neurons, sensitization of P2X3 receptors gated by extracellular ATP contributes to chronic pain. We explored the possibility that receptor sensitization may arise from down-regulation of an intracellular signal negatively controlling receptor function. In view of the structural modeling between the Src region phosphorylated by the C-terminal Src inhibitory kinase (Csk) and the intracellular C terminus domain of the P2X3 receptor, we investigated how Csk might regulate receptor activity. Using HEK cells and the in vitro kinase assay, we observed that Csk directly phosphorylated the tyrosine 393 residue of the P2X3 receptor and strongly inhibited receptor currents. On mouse trigeminal sensory neurons, the role of Csk was tightly controlled by the extracellular level of nerve growth factor, a known algogen. Furthermore, silencing endogenous Csk in HEK or trigeminal cells potentiated P2X3 receptor responses, confirming constitutive Csk-mediated inhibition. The present study provides the first demonstration of an original molecular mechanism responsible for negative control over P2X3 receptor function and outlines a potential new target for trigeminal pain suppression
    corecore