65 research outputs found

    Combining multiple lower-fidelity models for emulating complex model responses for CCS environmental risk assessment

    Get PDF
    Numerical modeling is essential to support natural resource management and environmental policy-making. In the context of CO2 geological sequestration, these models are indispensible parts of risk assessment tools. However, because of increasing complexity, modern numerical models require a great computational effort, which in some cases may be infeasible. An increasingly popular approach to overcome computational limitations is the use of surrogate models. This paper presents a new surrogate modeling approach to reduce the computational cost of running a complex, high-fidelity model. The approach is based on the simplification the high-fidelity model into computationally efficient, lower-fidelity models and on linking them with a mathematical function (linking function) that addresses the discrepancies between outputs from models with different levels of fidelity. The resulting linking function model, which can be developed with small computational effort, can be efficiently used in numerical applications where multiple runs of the original high-fidelity model are required, such as for uncertainty quantification or sensitivity analysis. The proposed approach was then applied to the development of a reduced order model for the prediction of groundwater quality impacts from CO2 and brine leakage for the National Risk Assessment Partnership (NRAP) project

    Reply to Comments by Veling on “A Semi-Analytical Solution for Large-Scale Injection-Induced Pressure Perturbation and Leakage in a Laterally Bounded Aquifer–Aquitard System” by Zhou, Birkholzer, and Tsang

    Get PDF
    Veling (2010) pointed to 'a serious mistake' and 'mathematical inconsistency' in Zhou et al. (2009) because the dimensionless flow equations in Equation 4 (in terms of dimensionless hydraulic head rise in the aquifer and the aquitard) would give rise to additional terms when back converting to the groundwater flow equations, in the case that initial conditions for hydraulic head were spatially variable. He added, however, that the conclusions of the paper remain valid when uniform initial conditions are assumed. We accept this comment because we have indeed assumed uniform initial conditions in the system but failed to state this explicitly in the publication, partially because this assumption is very common in groundwater hydrology when deriving analytical and semi-analytical solutions. The same assumption was employed, for example, by Veling in Veling and Maas (2009), as stated 'For the ease of presentation we assume from here on that {phi}{sub i0} (r, z) ... are all equal to zero. An arbitrary initial function ... will complicate the solution, but not essentially'. We shall emphasize that with this assumption, our semi-analytical solutions and their derivations are correct

    Impacts of elevated dissolved CO2 on a shallow groundwater system: reactive transport modeling of a controlled-release field test

    Get PDF
    One of the risks that CO2 geological sequestration imposes on the environment is the impact of potential CO2/brine leakage on shallow groundwater. The reliability of reactive transport models predicting the response of groundwater to CO2 leakage depends on a thorough understanding of the relevant chemical processes and key parameters affecting dissolved CO2 transport and reaction. Such understanding can be provided by targeted field tests integrated with reactive transport modeling. A controlled-release field experiment was conducted in Mississippi to study the CO2-induced geochemical changes in a shallow sandy aquifer at about 50 m depth. The field test involved a dipole system in which the groundwater was pumped from one well, saturated with CO2 at the pressure corresponding to the hydraulic pressure of the aquifer, and then re-injected into the same aquifer using a second well. Groundwater samples were collected for chemical analyses from four monitoring wells before, during and after the dissolved CO2 was injected. In this paper, we present reactive transport models used to interpret the observed changes in metal concentrations in these groundwater samples. A reasonable agreement between simulated and measured concentrations indicates that the chemical response in the aquifer can be interpreted using a conceptual model that encompasses two main features: (a) a fast-reacting but limited pool of reactive minerals that responds quickly to changes in pH and causes a pulse-like concentration change, and (b) a slow-reacting but essentially unlimited mineral pool that yields rising metal concentrations upon decreased groundwater velocities after pumping and injection stopped. During the injection, calcite dissolution and Ca-driven cation exchange reactions contribute to a sharp pulse in concentrations of Ca, Ba, Mg, Mn, K, Li, Na and Sr, whereas desorption reactions control a similar increase in Fe concentrations. After the injection and pumping stops and the groundwater flow rate decreases, the dissolution of relatively slow reacting minerals such as plagioclase drives the rising concentrations of alkali and alkaline earth metals observed at later stages of the test, whereas the dissolution of amorphous iron sulfide causes slowly increasing Fe concentrations

    Reactive transport simulations to study groundwater quality changes in response to CO2 leakage from deep geological storage

    Get PDF
    AbstractAs an effort to evaluate risks associated with geologic sequestration of CO2, this work assesses the potential effects of CO2 leakage on groundwater quality. Reactive transport simulations are performed to study the chemical evolution of aqueous Pb and As after the intrusion of CO2 from a storage reservoir into a shallow confined groundwater resource. The simulations use mineralogies representative of shallow potable aquifers in the USA; both 2D (depth-averaged) and 3D simulations are conducted. Sensitivity studies are also conducted for variation in hydrological and geochemical conditions, as well as several other critical parameters. Model results suggest that a significant increase of aqueous lead (Pb) and arsenic (As) may occur in response to CO2 intrusion, but in most sensitivity cases their concentrations remain below the EPA specified maximum contaminant levels (MCLs). Adsorption/desorption from mineral surfaces significantly impacts the mobilization of Pb and As. Results from the 3D model agree fairly well with the 2D model in cases where the rate of CO2 intrusion is relatively small (so that the majority of CO2 readily dissolves in the groundwater), whereas discrepancies between 2D and 3D models are observed when the CO2 intrusion rate is comparably large

    A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    Get PDF
    Abstract This paper presents an international, multiple-code, simulation study of coupled thermal, hydrological, and mechanical (THM) processes and their effect on permeability and fluid flow in fractured rock around heated underground nuclear waste emplacement drifts. Simulations were conducted considering two types of repository settings: (a) open emplacement drifts in relatively shallow unsaturated volcanic rock, and (b) backfilled emplacement drifts in deeper saturated crystalline rock. The results showed that for the two assumed repository settings, the dominant mechanism of changes in rock permeability was thermalmechanically-induced closure (reduced aperture) of vertical fractures, caused by thermal stress resulting from repository-wide heating of the rock mass. The magnitude of thermal-mechanically-induced changes in permeability was more substantial in the case of an emplacement drift located in a relatively shallow, low-stress environment where the rock is more compliant, allowing more substantial fracture closure during thermal stressing. However, in both of the assumed repository settings in this study, the thermalmechanically induced changes in permeability caused relatively small changes in the flow field, with most changes occurring in the vicinity of the emplacement drifts

    Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments

    Get PDF
    The role of capillary forces during buoyant migrati on of CO2 is critical towards plume immobilization within the post-injection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in-situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-te rm experiments in a 2.44 m Ă— 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO2-surrogate fluid saturation, thus providing direct insight into capillarity- and buoyancy-domin ated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type h eterogeneity plays an important role on non- wetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months vs. 24 days) to reach stable trapping c onditions, (ii) limited vertical migration of the plume (with center of mass at 39% vs. 55% of aquife r thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% vs. 51. 5% of injected volume) as compared to the homogenous scenario. While these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the s ubsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1-10 m)
    • …
    corecore