2 research outputs found
Calorimetric Investigation of CeRu2Ge2 up to 8 GPa
We have developed a calorimeter able to give a qualitative picture of the
specific heat of a sample under high pressure up to approximately 10 GPa. The
principle of ac-calorimetry was adapted to the conditions in a high pressure
clamp. The performance of this technique was successfully tested with the
measurement of the specific heat of CeRu2Ge2 in the temperature range 1.5
K<T<12 K. The phase diagram of its magnetic phases is consistent with previous
transport measurements.Comment: 5 pages, 4 figure
Calorimetric and transport investigations of CePd_{2+x}Ge_{2-x} (x=0 and 0.02) up to 22 GPa
The influence of pressure on the magnetically ordered CePd_{2.02}Ge_{1.98}
has been investigated by a combined measurement of electrical resistivity,
, and ac-calorimetry, C(T), for temperatures in the range 0.3 K<T<10 K
and pressures, p, up to 22 GPa. Simultaneously CePd_2Ge_2 has been examined by
down to 40 mK. In CePd_{2.02}Ge_{1.98} and CePd_2Ge_2 the magnetic
order is suppressed at a critical pressure p_c=11.0 GPa and p_c=13.8 GPa,
respectively. In the case of CePd_{2.02}Ge_{1.98} not only the temperature
coefficient of , A, indicates the loss of magnetic order but also the
ac-signal recorded at low temperature. The residual
resistivity is extremely pressure sensitive and passes through a maximum and
then a minimum in the vicinity of p_c. The (T,p) phase diagram and the
A(p)-dependence of both compounds can be qualitatively understood in terms of a
pressure-tuned competition between magnetic order and the Kondo effect
according to the Doniach picture. The temperature-volume (T,V) phase diagram of
CePd_2Ge_2 combined with that of CePd_2Si_2 shows that in stoichiometric
compounds mainly the change of interatomic distances influences the exchange
interaction. It will be argued that in contrast to this the much lower
p_c-value of CePd_{2.02}Ge_{1.98} is caused by an enhanced hybridization
between 4f and conduction electrons.Comment: 9 pages, 7 figure