4,213 research outputs found

    Financial disclosure and the Board: A case for non-independent directors

    Get PDF
    In listed companies, the Board of directors has ultimate responsibility for information disclosure. The conventional wisdom is that director independence is an essential factor in improving the quality of that disclosure. In a sense, this approach subordinates expertise to independence. We argue that effective certification may require firm-specific expertise, in particular for intangible-intensive business models. However, this latter form of expertise is negatively related to independence as it is commonly measured and evaluated. Accordingly, there exists an optimal share of independent directors for each company, related to the level of intangible resources.

    Dynamics of two phosphorelays controlling cell cycle progression in 1 Caulobacter crescentus

    Get PDF
    In Caulobacter crescentus, progression through the cell cycle is governed by the periodic activation and inactivation of the master regulator CtrA. Two phosphorelays, each initiating with the histidine kinase CckA, promote CtrA activation by driving its phosphorylation and by inactivating its proteolysis. Here, we examined whether the CckA phosphorelays also influence the downregulation of CtrA. We demonstrate that CckA is bifunctional, capable of acting as either a kinase or phosphatase to drive the activation or inactivation, respectively, of CtrA. By identifying mutations that uncouple these two activities, we show that CckA's phosphatase activity is important for downregulating CtrA prior to DNA replication initiation in vivo but that other phosphatases may exist. Our results demonstrate that cell cycle transitions in Caulobacter require and are likely driven by the toggling of CckA between its kinase and phosphatase states. More generally, our results emphasize how the bifunctional nature of histidine kinases can help switch cells between mutually exclusive states

    Mid-infrared Hall effect in thin-film metals: Probing the Fermi surface anisotropy in Au and Cu

    Full text link
    A sensitive mid-infrared (MIR, 900-1100 cm-1, 112-136 meV) photo-elastic polarization modulation technique is used to measure simultaneously Faraday rotation and circular dichroism in thin metal films. These two quantities determine the complex AC Hall conductivity. This novel technique is applied to study Au and Cu thin films at temperatures down to 20 K and magnetic fields up to 8 T. The Hall frequency is consistent with band theory predictions. We report the first measurement of the MIR Hall scattering rate, which is significantly lower than that derived from Drude analysis of zero magnetic field MIR transmission measurements. This difference is qualitatively explained in terms of the anisotropy of the Fermi surface in Au and Cu.Comment: 14 pages of text, 5 figure

    Renal pericytes: regulators of medullary blood flow

    Get PDF
    Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla

    Right versus left radial artery access for coronary procedures: an international collaborative systematic review and meta-analysis including 5 randomized trials and 3210 patients

    Get PDF
    BACKGROUND: Radial artery access is a mainstay in the diagnosis and treatment of coronary artery disease. However, there is uncertainty on the comparison of right versus left radial access for coronary procedures. We thus undertook a systematic review and meta-analysis comparing right versus left radial access for coronary diagnostic and interventional procedures. METHODS: Pertinent studies were searched in CENTRAL, Google Scholar, MEDLINE/PubMed, and Scopus, together with international conference proceedings. Randomized trials comparing right versus left radial (or ulnar) access for coronary diagnostic or interventional procedures were included. Risk ratios (RR) and weighted mean differences (WMD) were computed to generate point estimates (95% confidence intervals). RESULTS: A total of 5 trials (3210 patients) were included. No overall significant differences were found comparing right versus left radial access in terms of procedural time (WMD=0.99 [-0.53; 2.51]min, p=0.20), contrast use (WMD=1.71 [-1.32; 4.74]mL, p=0.27), fluoroscopy time (WMD=-35.79 [-3.54; 75.12]s, p=0.07) or any major complication (RR=2.00 [0.75; 5.31], p=0.49). However, right radial access was fraught with a significantly higher risk of failure leading to cross-over to femoral access (RR=1.65 [1.18; 2.30], p=0.003) in comparison to left radial access. CONCLUSIONS: Right and left radial accesses appear largely similar in their overall procedural and clinical performance during transradial diagnostic or interventional procedures. Nonetheless, left radial access can be recommended especially during the learning curve phase to reduce femoral cross-overs

    Much ado about making money: The impact of disclosure, news and rumors over the formation of security market prices over time

    Get PDF
    This article develops an agent-based model of security market pricing process, capable to capture main stylised facts. It features a collective market pricing mechanism based upon evolving heterogenous expectations that incorporate signals of security issuer fundamental performance over time. Distinctive signaling sources on this performance correspond to institutional mechanisms of information diffusion. These sources differ by duration effect (temporary, persistent, and permanent), confidence, and diffusion degree among investors over space and time. Under full and immediate diffusion and balanced reaction by all the investors, the value of these sources should be consistently and timely integrated by the market price process, implying efficient pricing. By relaxing these quite heroic conditions, we assess the impact of distinctive information sources over market price dynamics, through financial systemic properties such as market price volatility, exuberance and errancy, as well as market liquidity. Our simulation analysis shows that transient information shocks can have permanent effects through mismatching reactions and self-reinforcing feedbacks, involving mispricing in both value and timing relative to the efficient market price series. This mispricing depends on both the information diffusion process and the ongoing information confidence mood among investors over space and time. We illustrate our results through paradigmatic cases of stochastic news, before generalising them to autocorrelated news. Our results are further corroborated by robustness checks over the parameter space

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore