42 research outputs found

    Fast Genes and Slow Clades: Comparative Rates of Molecular Evolution in Mammals

    Get PDF
    Although interest in the rate of molecular evolution and the molecular clock remains high, our knowledge for most groups in these areas is derived largely from a patchwork of studies limited in both their taxon coverage and the number of genes examined. Using a comprehensive molecular data set of 44 genes (18 nDNA, 11 tRNA and 15 additional mtDNA genes) together with a virtually complete and dated phylogeny of extant mammals, I 1) describe differences in the rate of molecular evolution (i.e. substitution rate) within this group in an explicit phylogenetic and quantitative framework and 2) present the first attempt to localize the phylogenetic positions of any rate shifts. Significant rate differences were few and confirmed several long-held trends, including a progressive rate slowdown within hominids and a reduced substitution rate within Cetacea. However, many new patterns were also uncovered, including the mammalian orders being characterized generally by basal rate slowdowns. A link between substitution rate and the size of a clade (which derives from its net speciation rate) is also suggested, with the species-poor major clades (“orders”) showing more decreased rates that often extend throughout the entire clade. Significant rate increases were rare, with the rates within (murid) rodents being fast, but not significantly so with respect to other mammals as a whole. Despite clear lineage-specific differences, rates generally change gradually along these lineages, supporting the potential existence of a local molecular clock in mammals. Together, these results will lay the foundation for a broad-scale analysis to establish the correlates and causes of the rate of molecular evolution in mammals

    Rocks versus clocks or rocks and clocks

    Get PDF

    How does the 'ancient' asexual Philodina roseola (Rotifera:Bdelloidea) handle potential UVB-induced mutations?

    Get PDF
    Like other obligate asexuals, bdelloid rotifers are expected to suffer from degradation of their genomes through processes including the accumulation of deleterious mutations. However, sequence-based analyses in this regard remain inconclusive. Instead of looking for historical footprints of mutations in these ancient asexuals, we directly examined the susceptibility and ability to repair point mutations by the bdelloid Philodina roseola by inducing cyclobutane-pyrimidine dimers (CPDs) via exposure to UVB radiation (280-320 nm). For comparison, we performed analogous experiments with the facultative asexual monogonont rotifer Brachionus rubens. Different strategies were found for the two species. Philodina roseola appeared to shield itself from CPD induction through uncharacterized UV-absorbing compounds and, except for the genome reconstruction that occurs after desiccation, was largely unable to repair UVB-induced damage. By contrast, B. rubens was more susceptible to UVB irradiation, but could repair all induced damage in similar to 2 h. In addition, whereas UV irradiation had a significant negative impact on the reproductive output of P. roseola, and especially so after desiccation, that of B. rubens was unaffected. Although the strategy of P. roseola might suffice under natural conditions where UVB irradiation is less intense, the lack of any immediate CPD repair mechanisms in this species remains perplexing. It remains to be investigated how typical these results are for bdelloids as a group and therefore how reliant these animals are on desiccation-dependent genome repair to correct potential DNA damage given their obligate asexual lifestyle.</p

    Assembling the Tree of Life in Europe (AToLE)

    Get PDF
    A network of scientists under the umbrella of &#x27;Assembling the Tree of Life in Europe (AToLE)&#x27; seeks funding under the FP7-Theme: Cooperation - Environment (including Climate Change and Biodiversity Conservation) programme of the European Commission.&#xd;&#xa

    A Novel Method for Comparative Analysis of Retinal Specialization Traits from Topographic Maps

    Get PDF
    Abstract Vertebrates possess different types of retinal specializations that vary in number, size, shape, and position in the retina. This diversity in retinal configuration has been revealed through topographic maps, which show variations in neuron density across the retina. Although topographic maps of about 300 vertebrates are available, there is no method for characterizing retinal traits quantitatively. Our goal is to present a novel method to standardize information on the position of the retinal specializations and changes in retinal ganglion cell (RGC) density across the retina from published topographic maps. We measured the position of the retinal specialization using two Cartesian coordinates and the gradient in cell density by sampling ganglion cell density values along four axes (nasal, temporal, ventral, and dorsal). Using this information, along with the peak and lowest RGC densities, we conducted discriminant function analyses (DFAs) to establish if this method is sensitive to distinguish three common types of retinal specializations (fovea, area, and visual streak). The discrimination ability of the model was higher when considering terrestrial (78%–80% correct classification) and aquatic (77%–86% correct classification) species separately than together. Our method can be used in the future to test specific hypotheses on the differences in retinal morphology between retinal specializations and the association between retinal morphology and behavioral and ecological traits using comparative methods controlling for phylogenetic effects

    Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates

    Get PDF

    Evidence Supporting the Uptake and Genomic Incorporation of Environmental DNA in the “Ancient Asexual” Bdelloid Rotifer Philodina roseola

    No full text
    Increasing evidence suggests that bdelloid rotifers regularly undergo horizontal gene transfer, apparently as a surrogate mechanism of genetic exchange in the absence of true sexual reproduction, in part because of their ability to withstand desiccation. We provide empirical support for this latter hypothesis using the bdelloid Philodina roseola, which we demonstrate to readily internalize environmental DNA in contrast to a representative monogonont rotifer (Brachionus rubens), which, like other monogononts, is facultative sexual and cannot withstand desiccation. In addition, environmental DNA that was more similar to the host DNA was retained more often and for a longer period of time. Indirect evidence (increased variance in the reproductive output of the untreated F1 generation) suggests that environmental DNA can be incorporated into the genome during desiccation and is thus heritable. Our observed fitness effects agree with sexual theory and also occurred when the animals were desiccated in groups (thereby acting as DNA donors), but not individually, indicating the mechanism could occur in nature. Thus, although DNA uptake and its genomic incorporation appears proximally related to anhydrobiosis in bdelloids, it might also facilitate accidental genetic exchange with closely related taxa, thereby maintaining higher levels of genetic diversity than is otherwise expected for this group of “ancient asexuals”
    corecore