23 research outputs found

    Minimize the load reduction considering the activities control of the generators and phase distance

    Get PDF
    This study shows how to calculate the minimum load that needs to be reduced to restore the frequency to the specified threshold. To implement this problem, the actual operation of the electricity system in the event of a generator outage is considered. The main idea of this method is to use the power balance equation between the generation and the load with different frequency levels. In all cases of operating the electrical system before and after the generator outage, the reserve capacity of other generators is considered in each generator outage situation. The reduced load capacity is calculated based on the reciprocal phase angle sensitivity or phase distance. This makes the voltage phase angle and voltage value quality of recovery nodes better. The standard IEEE 9-generator 37-bus test scheme was simulated to show the result of the proposed technique

    Event-based simulation of light propagation in lossless dielectric media

    Full text link
    We describe an event-based approach to simulate the propagation of an electromagnetic plane wave through dielectric media. The basic building block is a deterministic learning machine that is able to simulate a plane interface. We show that a network of two of such machines can simulate the propagation of light through a plane parallel plate. With properly chosen parameters this setup can be used as a beam splitter. The modularity of the simulation method is illustrated by constructing a Mach-Zehnder interferometer from plane parallel plates, the whole system reproducing the results of wave theory. A generalization of the event-based model of the plane parallel plate is also used to simulate a periodically stratified medium.Comment: Accepted for publication in Computer Physics Report

    Application of AHP algorithm on power distribution of load shedding in island microgrid

    Get PDF
    This paper proposes a method of load shedding in a microgrid system operated in an Island Mode, which is disconnected with the main power grid and balanced loss of the electrical power. This proposed method calculates the minimum value of the shed power with reference to renewable energy sources such as wind power generator, solar energy and the ability to control the frequency of the generator to restore the frequency to the allowable range and reduce the amount of load that needs to be shed. Computing the load importance factor (LIF) using AHP algorithm supports to determine the order of which load to be shed. The damaged outcome of load shedding, thus, will be noticeably reduced. The experimental results of this proposed method is demonstrated by simulating on IEEE 16-Bus microgrid system with six power sources

    Rifampicin resistant 'Mycobacterium tuberculosis' in Vietnam, 2020–2022

    Get PDF
    Objective: We conducted a descriptive analysis of multi-drug resistant tuberculosis (MDR-TB) in Vietnam’s two largest cities, Hanoi and Ho Chi Minh city. Methods: All patients with rifampicin resistant tuberculosis were recruited from Hanoi and surrounding provinces between 2020 and 2022. Additional patients were recruited from Ho Chi Minh city over the same time period. Demographic data were recorded from all patients, and samples collected, cultured, whole genome sequenced and analysed for drug resistance mutations. Genomic susceptibility predictions were made on the basis of the World Health Organization’s catalogue of mutations in Mycobacterium tuberculosis associated with drug resistance, version 2. Comparisons were made against phenotypic drug susceptibility test results where these were available. Multivariable logistic regression was used to assess risk factors for previous episodes of tuberculosis. Results: 233/265 sequenced isolates were of sufficient quality for analysis, 146 (63 %) from Ho Chi Minh City and 87 (37 %) from Hanoi. 198 (85 %) were lineage 2, 20 (9 %) were lineage 4, and 15 (6 %) were lineage 1. 17/211 (8 %) for whom HIV status was known were infected, and 109/214 (51 %) patients had had a previous episode of tuberculosis. The main risk factor for a previous episode was HIV infection (odds ratio 5.1 (95 % confidence interval 1.3–20.0); p = 0.021). Sensitivity for predicting first-line drug resistance from whole genome sequencing data was over 90 %, with the exception of pyrazinamide (85 %). For moxifloxacin and amikacin it was 50 % or less. Among rifampicin-resistant isolates, prevalence of resistance to each non-first-line drug was < 20 %. Conclusions: Drug resistance among most MDR-TB strains in Vietnam’s two largest cities is confined largely to first-line drugs. Living with HIV is the main risk factor among patients with MDR-TB for having had a previous episode of tuberculosis

    An open label randomized controlled trial of tamoxifen combined with amphotericin B and fluconazole for cryptococcal meningitis

    Get PDF
    Background: Cryptococcal meningitis has high mortality. Flucytosine is a key treatment but is expensive and rarely available. The anti-cancer agent tamoxifen has synergistic anti-cryptococcal activity with amphotericin in vitro. It is off-patent, cheap, and widely available. We performed a trial to determine its therapeutic potential. Methods:Open label randomized controlled trial. Participants received standard care - amphotericin combined with fluconazole for the first two weeks - or standard care plus tamoxifen 300mg/day. The primary end point was Early Fungicidal Activity (EFA) - the rate of yeast clearance from cerebrospinal fluid (CSF). Trial registration https://clinicaltrials.gov/ct2/show/NCT03112031 . Results: 50 patients were enrolled, (median age 34 years, 35 male). Tamoxifen had no effect on EFA (- 0.48log10 colony-forming units/mL/CSF control arm versus -0.49 tamoxifen arm, difference - 0.005log10CFU/ml/day, 95%CI: -0.16, 0.15, P=0.95). Tamoxifen caused QTc prolongation. Conclusion: High dose tamoxifen does not increase the clearance rate of Cryptococcus from CSF. Novel, affordable therapies are needed. Funding:The trial was funded through the Wellcome Trust Asia Programme Vietnam Core Grant 106680 and a Wellcome Trust Intermediate Fellowship to JND grant number WT097147MA

    Effects of riverbed incision on the hydrology of the Vietnamese Mekong Delta

    Get PDF
    The hydrogeomorphology of the Vietnamese Mekong Delta (VMD) has been significantly altered by natural and anthropogenic drivers. In this study, the spatiotemporal changes of the flow regime were examined by analysing the long-term daily, monthly, annual and extreme discharges and water levels from 1980 to 2018, supported by further investigation of the long-term annual sediment load (from the 1960s to 2015), river bathymetric data (in 1998, 2014 and 2017) and daily salinity concentration (from the 1990s to 2015) using various statistical methods and a coupled numerical model. Then, the effects of riverbed incision on the hydrology were investigated. The results show that the dry season discharge (i.e., in March–June) of the Tien River increased by up to 23% from the predam period (1980–1992) to the postdam period (1993–2018) but that the dry season water level at My Thuan decreased by up to −46%. The annual mean and monthly water levels in June at Tan Chau and in January and June–October at My Thuan in the Tien River decreased statistically, even though the respective discharges increased significantly. These decreased water levels instead of the increased discharges were attributed to the accelerated riverbed incision upstream from My Thuan, which increased by more than three times, from a mean rate of −0.16 m/year (−16.7 Mm³/year) in 1998–2014 to −0.5 m/year (−52.5 Mm³/year) in 2014–2017. This accelerated riverbed incision was likely caused by the reduction in the sediment load of the VMD (from 166.7 Mt/year in the predam period to 57.6 Mt/year in the postdam period) and increase in sand mining (from 3.9 Mm3 in 2012 to 13.43 Mm3 in 2018). Collectively, the decreased dry season water level in the Tien River is likely one of the main causes of the enhanced salinity intrusion

    Urban inundation forecasting based on hydraulic models coupling MIKE Flood and MIKE Urban: A case study of Tam Ky City, Vietnam

    No full text
    Abstract Urban inundation has become a growing concern for many coastal cities around the world. Tam Ky City, located downstream of Ban Thach and Tam Ky rivers in central Vietnam, is no exception. According to annual statistics, the city frequently experiences heavy rainfall from tropical storms and monsoons, making inundation a recurring issue. In response to this challenge, this study developed a flood forecasting model specifically tailored for Tam Ky City, based on forecast rainfall and tidal levels. A key strength of the flood forecasting model lies in its integration of rainfall‐runoff processes, effectively connecting the river basin and the city. To ensure the model's accuracy and reliability, the parameters of the flood forecasting model were meticulously calibrated and verified for floods occurred on rivers as well as in urban areas. An experimental flood forecast was performed during Typhoon Nuru on September 28, 2022, and the forecast results of inundation locations and depths in the city well reflected the actual observations

    Propyl Gallate

    No full text
    The title compound, propyl gallate (III), is an important substance popularly used in the food, cosmetic and pharmaceutical industries. Current chemical syntheses of this compound are based on the acylation supported by thionyl chloride, DIC/DMAP or Fischer esterification using a range of homogenous and heterogenous catalysts. In this paper, an efficient, green, straightforward, and economical method for synthesizing propyl gallate using potassium hydrogen sulfate, KHSO4, as the heterogenous acidic catalyst has been developed for the first time. In addition, this paper provides a comprehensive spectral dataset for the title compound, especially the new data on DEPT and 2D NMR (HSQC and HMBC) spectra which are not currently available in the literature

    Molybdenum Catalysts based on Salan Ligands for the Deoxydehydration Reaction

    No full text
    Dioxomolybdenum complexes based on salan ligands have been evaluated for their potential in catalyzing the deoxydehydration (DODH) reaction. The DODH reaction is a formal reduction that converts vicinal diols into olefins using an oxometal catalyst and a sacrificial reductant. The reaction holds enormous potential in transforming biomass-derived molecules into platform chemicals. This study evaluated 20 molybdenum complexes supported by salan ligands in the DODH reaction with the goal of establishing structure-activity relationships. Catalyst screenings were performed using styrene glycol as a model substrate and 1-10 mol% loading of the molybdenum complexes at 170 oC producing styrene in up to 54% yield. Aliphatic diols and meso-/R,R-hydrobenzoin were also converted to the corresponding alkenes in moderate to good yields that are comparable to previously reported molybdenum catalysts. A bio-derived glycol, (+)−diethyltartrate, could be converted to the alkene product (diethyl fumarate) in >98% yield using 10 mol% catalyst. A high yield of diethyl fumarate (78%) was also obtained with Na2SO3 (cheap, readily available, and benign) as reductant. Quite significantly, a 42% yield of diethyl fumarate was also obtained at a 1 mol% catalyst loading which represents a turnover number (TON) of 42; this is one of highest activity in a DODH reaction observed with molybdenum catalysts. The catalytic studies along with preliminary kinetic investigations reveal significant ligand effects: sterically bulky ortho-substituents and electron-withdrawing para-substituents on the phenol arms were found to enhance catalytic activity while a rigid phenyl as well as an ethylene backbone featuring a tertiary amine were observed to impede catalysis
    corecore