53 research outputs found

    Vetting undesirable behaviors in android apps with permission use analysis

    Full text link
    Android platform adopts permissions to protect sensitive resources from untrusted apps. However, after permissions are granted by users at install time, apps could use these permissions (sensitive resources) with no further restrictions. Thus, recent years have witnessed the explosion of undesirable behaviors in Android apps. An important part in the defense is the accurate analysis of Android apps. However, traditional syscall-based analysis techniques are not well-suited for Android, because they could not capture critical interactions between the application and the Android system. This paper presents VetDroid, a dynamic analysis platform for reconstructing sensitive behaviors in Android apps from a novel permission use perspective. VetDroid features a systematic frame-work to effectively construct permission use behaviors, i.e., how applications use permissions to access (sensitive) system resources, and how these acquired permission-sensitive resources are further utilized by the application. With permission use behaviors, security analysts can easily examine the internal sensitive behaviors of an app. Using real-world Android malware, we show that VetDroid can clearly reconstruct fine-grained malicious behaviors to ease malware analysis. We further apply VetDroid to 1,249 top free apps in Google Play. VetDroid can assist in finding more information leaks than TaintDroid [24], a state-of-the-art technique. In addition, we show howwe can use VetDroid to analyze fine-grained causes of information leaks that TaintDroid cannot reveal. Finally, we show that VetDroid can help identify subtle vulnerabilities in some (top free) applications otherwise hard to detect

    Multiple organ infection and the pathogenesis of SARS

    Get PDF
    After >8,000 infections and >700 deaths worldwide, the pathogenesis of the new infectious disease, severe acute respiratory syndrome (SARS), remains poorly understood. We investigated 18 autopsies of patients who had suspected SARS; 8 cases were confirmed as SARS. We evaluated white blood cells from 22 confirmed SARS patients at various stages of the disease. T lymphocyte counts in 65 confirmed and 35 misdiagnosed SARS cases also were analyzed retrospectively. SARS viral particles and genomic sequence were detected in a large number of circulating lymphocytes, monocytes, and lymphoid tissues, as well as in the epithelial cells of the respiratory tract, the mucosa of the intestine, the epithelium of the renal distal tubules, the neurons of the brain, and macrophages in different organs. SARS virus seemed to be capable of infecting multiple cell types in several organs; immune cells and pulmonary epithelium were identified as the main sites of injury. A comprehensive theory of pathogenesis is proposed for SARS with immune and lung damage as key features

    Spatially explicit analyses of sustainable agricultural residue potential for bioenergy in China under various soil and land management scenarios

    Get PDF
    Sustainability is critical for biomass feedstock supply and crop production. Most studies on agricultural residue estimations ignored the loss of soil organic carbon (SOC) and thus possibly overestimated its resource potential. This study estimated the resource potential of using agricultural residues for bioenergy in China, considering soil conservation, collection cost, and future changes in yield and management. This study carried out a spatial explicit assessment of sustainable agricultural residue potential and their on-farm collection costs. Rothamsted carbon model was used to quantify the grid-specific amount of residue to be retained in soil for sustainable purposes. The results showed that 226 Mt of residues could be collected annually to maintain the current SOC level, which ranges from 0.1% to 39.0% at a mean of 1.1% nationwide. To achieve SOC level above 2% over all arable land in China, the collectable residues would be reduced to 24 Mt. Future yield improvements and no- tillage would significantly increase the collectable residues to 117, 383, and 514 Mt in 2050 under SOC sce- narios of above 2%, above 1%, and maintaining current level, respectively. Maintaining the current SOC level, 495 Mt of residues could be collected in 2050 with a cost ≤ 0.98 $⋅GJ−1, which equals 8.6 EJ of energy potential. From the view of high supply potentials and low collection costs, Shandong, Henan, and Jiangsu provinces are the preferred regions to develop residue-based bioenergy production. The results highlighted the differences of resource potential among various SOC scenarios and spatial heterogeneity of residue resource among regions

    A multi-period framework for coordinated dispatch of plug-in electric vehicles

    No full text
    Coordinated dispatch of plug-in electric vehicles (PEVs) with renewable energies has been proposed in recent years. However, it is difficult to achieve effective PEV dispatch with a win-win result, which not only optimizes power system operation, but also satisfies the requirements of PEV owners. In this paper, a multi-period PEV dispatch framework, combining day-ahead dispatch with real-time dispatch, is proposed. On the one hand, the day-ahead dispatch is used to make full use of wind power and minimize the fluctuation of total power in the distribution system, and schedule the charging/discharging power of PEV stations for each period. On the other hand, the real-time dispatch arranges individual PEVs to meet the charging/discharging power demands of PEV stations given by the day-ahead dispatch. To reduce the dimensions of the resulting large-scale, non-convex problem, PEVs are clustered according to their travel information. An interval optimization model is introduced to obtain the problem solution of the day-ahead dispatch. For the real-time dispatch, a priority-ordering method is developed to satisfy the requirements of PEV owners with fast response. Numerical studies demonstrate the effectiveness of the presented framework

    Role of the Nyainrong Microcontinent in Seismogenic Mechanism and Stress Partitioning: Insights from the 2021 Nagqu Mw 5.7 Earthquake

    No full text
    The Nyainrong microcontinent carries key information about the ongoing evolution of the central Tibetan Plateau. The 2021 Mw 5.7 Nagqu earthquake is the largest instrumentally recorded event inside this microcontinent, which provides an ideal opportunity to elucidate the influence of this ancient microcontinent on the seismogenic mechanisms, stress heterogeneity and strain partitioning across the Tibetan Plateau. Here, we constrain the seismogenic fault geometry and distributed fault slip using Interferometric Synthetic Aperture Radar (InSAR) observations. By using the regional focal mechanism solutions, we invert the stress regimes surrounding the Nyainrong microcontinent. Our analysis demonstrates that the mainshock was caused by a normal fault with a comparable sinistral strike-slip component on a North-West dipping fault plane. The Nyainrong microcontinent is surrounded by a dominant normal faulting stress regime to the northeast and a dominant strike-slip stress regime to the southwest. Moreover, the clockwise rotation of the maximum horizontal stress (SHmax) from the southwest to the northeast is ~20°. This indicates that the Nyainrong microcontinent is involved in the mainshock occurrence as well as regional stress heterogeneity, and strain partitioning. Our results highlight the significance of the ancient microcontinent in the tectonic evolution of the Tibetan Plateau

    Post-Event Surface Deformation of the 2018 Baige Landslide Revealed by Ground-Based and Spaceborne Radar Observations

    No full text
    On 11 October and 3 November 2018, two large landslides occurred in Baige Village, Tibet, China, forcing the Jinsha River to be cut off and form a dammed lake, resulting in massive economic damages and deaths. This paper uses ground-based radar (GBR) and spaceborne interferometric synthetic aperture radar (InSAR) technologies to perform dynamic monitoring of the Baige landslide. Firstly, the GBR results suggest that the cumulative deformation from 4 to 10 December 2018 was 1.4 m, and the landslide still exhibits a risk of instability. Secondly, with the Sentinel-1A ascending and descending orbit images from December 2018 to February 2022, the InSAR-stacking technology assisted by the generic atmospheric correction online service (GACOS) and the multidimensional small baseline subset (MSBAS) method are utilized to obtain the annual deformation velocity and cumulative deformation in the satellite radar line of sight (LOS) direction of the landslide. Finally, according to the spatial–temporal deformation characteristics of feature points, combined with optical images, field investigation, and geological conditions, the development trend and inducing factors of the Baige landslide are comprehensively analyzed. It is shown that the Baige landslide is in constant motion at present, and the deformation is spreading from the slope to its right side. This research establishes a framework of combining emergency monitoring (i.e., GBR) with long-term monitoring (i.e., spaceborne InSAR). The framework is more conducive to obtaining the deformation and evolution of landslides, providing a greater possibility for studying the development trend and risk assessment of landslides, and assisting in reducing or even avoiding the losses caused by landslides
    • …
    corecore