45 research outputs found

    Turbulent mixing variability in an energetic standing meander of the Southern Ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1593-1611, https://doi.org/10.1175/jpo-d-21-0180.1.This study presents novel observational estimates of turbulent dissipation and mixing in a standing meander between the Southeast Indian Ridge and the Macquarie Ridge in the Southern Ocean. By applying a finescale parameterization on the temperature, salinity, and velocity profiles collected from Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats in the upper 1600 m, we estimated the intensity and spatial distribution of dissipation rate and diapycnal mixing along the float tracks and investigated the sources. The indirect estimates indicate strong spatial and temporal variability of turbulent mixing varying from O(10−6) to O(10−3) m2 s−1 in the upper 1600 m. Elevated turbulent mixing is mostly associated with the Subantarctic Front (SAF) and mesoscale eddies. In the upper 500 m, enhanced mixing is associated with downward-propagating wind-generated near-inertial waves as well as the interaction between cyclonic eddies and upward-propagating internal waves. In the study region, the local topography does not play a role in turbulent mixing in the upper part of the water column, which has similar values in profiles over rough and smooth topography. However, both remotely generated internal tides and lee waves could contribute to the upward-propagating energy. Our results point strongly to the generation of turbulent mixing through the interaction of internal waves and the intense mesoscale eddy field.The observations were funded through grants from the Australian Research Council Discovery Project (DP170102162) and Australia’s Marine National Facility. Surface drifters were provided by Dr. Shaun Dolk of the Global Drifter Program. AC was supported by an Australian Research Council Postdoctoral Fellowship. AC, HEP, and NLB acknowledge support from the Australian Government Department of the Environment and Energy National Environmental Science Program and the ARC Centre of Excellence in Climate Extremes. KP acknowledges the support from the National Science Foundation

    Interannual variability of the South Indian Countercurrent

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 3465–3487, doi:10.1002/2015JC011417.In the present work, we investigate the interannual variability of the South Indian Countercurrent (SICC), a major and still understudied current of the Indian Ocean circulation. To characterize the interannual variability of the SICC, four different data sets (altimetry, GLORYS, OFAM3, and SODA) are analyzed using multiple tools, which include Singular Spectrum Analysis and wavelet methods. The quasi-biennial band dominates the SICC low-frequency variance, with the main peak in the 1.5–1.8 year interval. A secondary peak (2.1–2.5 year) is only found in the western basin. Interannual and decadal-type modulations of the quasi-biennial signal are also identified. In addition, limitations of SODA before the 1960s in the SICC region are revealed. Within the quasi-biennial band, the SICC system presents two main patterns with a multiple jet structure. One pattern is characterized by a robust northern jet, while in the other the central jet is well developed and northern jet is weaker. In both patterns, the southern jet has always a strong signature. When the northern SICC jet is stronger, the northern cell of the subtropical gyre has a triangular shape, with its southern limb having a strong equatorward slant. The quasi-biennial variability of the SICC is probably related to the Indian Ocean tropical climate modes that are known to have a strong biennial characteristic.ARC Discovery Project Grant Number: DP130102088; NSF Grant Number: OCE-091716; Ocean Science Division of VM Oceanica2016-11-2

    Mixing variability in the Southern Ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 966–987, doi:10.1175/JPO-D-14-0110.1.A key remaining challenge in oceanography is the understanding and parameterization of small-scale mixing. Evidence suggests that topographic features play a significant role in enhancing mixing in the Southern Ocean. This study uses 914 high-resolution hydrographic profiles from novel EM-APEX profiling floats to investigate turbulent mixing north of the Kerguelen Plateau, a major topographic feature in the Southern Ocean. A shear–strain finescale parameterization is applied to estimate diapycnal diffusivity in the upper 1600 m of the ocean. The indirect estimates of mixing match direct microstructure profiler observations made simultaneously. It is found that mixing intensities have strong spatial and temporal variability, ranging from O(10−6) to O(10−3) m2 s−1. This study identifies topographic roughness, current speed, and wind speed as the main factors controlling mixing intensity. Additionally, the authors find strong regional variability in mixing dynamics and enhanced mixing in the Antarctic Circumpolar Current frontal region. This enhanced mixing is attributed to dissipating internal waves generated by the interaction of the Antarctic Circumpolar Current and the topography of the Kerguelen Plateau. Extending the mixing observations from the Kerguelen region to the entire Southern Ocean, this study infers a large water mass transformation rate of 17 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) across the boundary of Antarctic Intermediate Water and Upper Circumpolar Deep Water in the Antarctic Circumpolar Current. This work suggests that the contribution of mixing to the Southern Ocean overturning circulation budget is particularly significant in fronts.AM was supported by the joint CSIRO–University of Tasmania Quantitative Marine Science (QMS) program and the 2009 CSIRO Wealth from Ocean Flagship Collaborative Fund. BMS was supported by the Australian Climate Change Science Program, jointly funded by the Department of the Environment and CSIRO. KLPs salary support was provided by Woods Hole Oceanographic Institution bridge support funds.2015-10-0

    Near-surface salinity reveals the oceanic sources of moisture for Australian precipitation through atmospheric moisture transport

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(15), (2020): 6707-6730, https://doi.org/10.1175/JCLI-D-19-0579.1.The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on interseasonal to interannual time scales, and to locate the source of moisture. Seasonal composites during El Niño–Southern Oscillation/Indian Ocean dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies toward Australia. During co-occurring La Niña and negative IOD events, salty anomalies around the Maritime Continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, a moisture transport divergence anomaly over Australia results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated ocean–atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g., the 2010/11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall.This research is funded through the Earth System and Climate Change Hub of the Australian government’s National Environmental Science Programme. The assistance of computing resources from the National Computational Infrastructure supported by the Australian Government is acknowledged. CCU acknowledges support from the U.S. National Science Foundation under Grant OCE-1663704. MF was supported by the by Centre for Southern Hemisphere Oceans Research (CSHOR), which is a joint initiative between the Qingdao National Laboratory for Marine Science and Technology (QNLM), CSIRO, University of New South Wales and University of Tasmania. The authors wish to acknowledge PyFerret (https://ferret.pmel.noaa.gov/Ferret/) and the Cimate Data Operators (https://code.mpimet.mpg.de/projects/cdo/) for the data analysis and graphical representations in this paper

    Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump

    Get PDF
    Accurate predictive modelling of the ocean's global carbon and oxygen cycles is challenging because of uncertainties in both biogeochemistry and ocean circulation. Advances over the last decade have made parameter optimization feasible, allowing models to better match observed biogeochemical fields. However, does fitting a biogeochemical model to observed tracers using a circulation with known biases robustly capture the inner workings of the biological pump? Here we embed a mechanistic model of the ocean's coupled nutrient, carbon, and oxygen cycles into two circulations for the current climate. To assess the effects of biases, one circulation (ACCESS-M) is derived from a climate model and the other from data assimilation of observations (OCIM2). We find that parameter optimization compensates for circulation biases at the expense of altering how the biological pump operates. Tracer observations constrain pump strength and regenerated inventories for both circulations, but ACCESS-M export production optimizes to twice that of OCIM2 to compensate for ACCESS-M having lower sequestration efficiencies driven by less efficient particle transfer and shorter residence times. Idealized simulations forcing complete Southern Ocean nutrient utilization show that the response of the optimized system is sensitive to the embedding circulation. In ACCESS-M, Southern Ocean nutrient and DIC trapping is partially short-circuited by unrealistically deep mixed layers. For both circulations, intense Southern Ocean production deoxygenates Southern-Ocean-sourced deep waters, muting the imprint of circulation biases on oxygen. Our findings highlight that the biological pump's plumbing needs careful assessment to predict the biogeochemical response to environmental changes, even when optimally matching observations.</p

    Performance of downscaled regional climate simulations using a variable-resolution regional climate model : Tasmania as a test case

    Get PDF
    In this study we develop methods for dynamically downscaling output from six general circulation models (GCMs) for two emissions scenarios using a variable-resolution atmospheric climate model. The use of multiple GCMs and emissions scenarios gives an estimate of model range in projected changes to the mean climate across the region. By modeling the atmosphere at a very fine scale, the simulations capture processes that are important to regional weather and climate at length scales that are subgrid scale for the host GCM. We find that with a multistaged process of increased resolution and the application of bias adjustment methods, the ability of the simulation to reproduce observed conditions improves, with greater than 95% of the spatial variance explained for temperature and about 90% for rainfall. Furthermore, downscaling leads to a significant improvement for the temporal distribution of variables commonly used in applied analyses, reproducing seasonal variability in line with observations. This seasonal signal is not evident in the GCMs. This multistaged approach allows progressive improvement in the skill of the simulations in order to resolve key processes over the region with quantifiable improvements in the correlations with observations

    Marine nitrogen fixers mediate a low latitude pathway for atmospheric CO2 drawdown

    Get PDF
    Roughly a third (~30 ppm) of the carbon dioxide (CO2) that entered the ocean during ice ages is attributed to biological mechanisms. A leading hypothesis for the biological drawdown of CO2 is iron (Fe) fertilisation of the high latitudes, but modelling efforts attribute at most 10 ppm to this mechanism, leaving ~20 ppm unexplained. We show that an Fe-induced stimulation of dinitrogen (N2) fixation can induce a low latitude drawdown of 7–16 ppm CO2. This mechanism involves a closer coupling between N2 fixers and denitrifiers that alleviates widespread nitrate limitation. Consequently, phosphate utilisation and carbon export increase near upwelling zones, causing deoxygenation and deeper carbon injection. Furthermore, this low latitude mechanism reproduces the regional patterns of organic ή15N deposited in glacial sediments. The positive response of marine N2 fixation to dusty ice age conditions, first proposed twenty years ago, therefore compliments high latitude changes to amplify CO2 drawdown

    Subpolar Southern Ocean response to changes in the surface momentum, heat, and freshwater fluxes under 2xCO2

    Get PDF
    The Antarctic subpolar Southern Ocean (sSO) has fundamental climate importance. Antarctic Bottom Water (AABW) originates in the sSO and supplies the lower limb of the meridional overturning circulation (MOC), occupying 36% of ocean volume. Climate models struggle to represent continental shelf processes that form AABW. We explore sources of persistent model biases by examining response of the sSO to perturbations in surface forcing in a global ocean–sea ice model (ACCESS-OM2) that forms AABW both on shelf and in open ocean. The sSO response to individual and combined perturbations of surface heat, freshwater, and momentum fluxes follows the WCRP CMIP6 FAFMIP-protocol. Wind perturbation (i.e., a poleward shift and intensification of the westerlies) is dominant, enhancing AABW formation and accelerating the global MOC. This occurs through upwelling of warm waters and inhibition of sea ice growth during winter, which triggers large open water polynya (OWP) events with associated deep convection. These events occur in the Weddell and Ross Seas and their variability is associated with availability of heat at midocean depths. These OWPs cease when the heat reservoir is depleted. Effects of surface warming and freshening only partially compensate changes from increasing winds on ocean stratification and depletion of AABW formation. These results indicate that overly convective models, such ACCESS-OM2, can respond to CO2-perturbed scenarios by forming too much AABW in OWP, which might not hold in models without OWPs. This might contribute to the large intermodel spread thermosteric sea level projections, being relevant to the interpretation of future projections by current climate models.Peer reviewe

    Technical Summary

    Get PDF
    This Technical Summary of the IPCC Special Report on Ocean and Cryosphere in a Changing Climate (SROCC) consists of the Executive Summaries of all chapters (1-6) of the Special Report, the Executive Summary from the Integrative Cross-Chapter Box on Low-Lying Islands and Coasts, and supporting figures drawn from the chapters and the Summary for Policymakers. The Technical Summary follows the structure of the Report (Table TS.1). Section TS.1 (Chapter 1) introduces important key concepts, summarizes the characteristics and interconnection of ocean and cryosphere and highlights their importance in the earth system and for human societies in the light of climate change. TS.2 (Chapter 2) assesses changes in high mountain cryosphere and their impacts on local mountain communities and far beyond. TS.3 (Chapter 3) evaluates the state of knowledge concerning changes and impacts in the Arctic and Antarctic ocean and cryosphere systems, including challenges and opportunities for societies. TS.4 (Chapter 4) focusses on regional and global changes in sea level, the associated risk to low-lying islands, coasts and human settlements, and response options. TS.5 (Chapter 5) assesses changes in the ocean and marine ecosystems, including risks to ecosystem services and vulnerability of the dependent communities. TS.6 (Chapter 6) examines extremes and abrupt or irreversible changes in the ocean and cryosphere in a changing climate, and identifies sustainable and resilient risk management strategies. All chapters and their Executive Summaries build on findings since the IPCC Fifth Assessment Report (AR5) and, whenever applicable, outcomes of the IPCC Special Report on Global Warming of 1.5ÂșC (SR15).Fil: Amro, Abd lgawad. Tourism Development Authority, Ministry Of Tourism, Cai; EgiptoFil: Abram, Nerilie. Australian National University; AustraliaFil: Adler, Carolina. Mountain Research Initiative - Mri; SuizaFil: Alegria, AndrĂ©s. Alfred-Wegener-Institut, Helmholtz-Zentrum fĂŒr Polar- und Meeresforschung; AlemaniaFil: Aristegui, Javier. Universidad de Las Palmas Gran Canaria; EspañaFil: Bindoff, Nathaniel L.. Csiro Oceans And Atmosphere.; AustraliaFil: Bouwer, Laurens. Climate Service Center Germany (gerics); AlemaniaFil: CĂĄceres, BolĂ­var. Universidad Mayor de San SimĂłn; BoliviaFil: Cai, Rongshuo. State Oceanic Administration Of China; ChinaFil: Cassotta, Sandra. Aalborg University; DinamarcaFil: Cheng, Lijing. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Cheong, So Min. University of Kansas; Estados UnidosFil: Cheung, William W. L.. University of British Columbia; CanadĂĄFil: Chidichimo, MarĂ­a Paz. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂ­a Naval. Departamento OceanografĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Cifuentes Jara, Miguel. No especifĂ­ca;Fil: Gruber, Nadia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Collins, Matthew. No especifĂ­ca;Fil: Crate, Susan. No especifĂ­ca;Fil: Rob Deconto (USA),. No especifĂ­ca;Fil: Chris Derksen (Canada),. No especifĂ­ca;Fil: Alexey Ekaykin (Russian Federation),. No especifĂ­ca;Fil: Hiroyuki Enomoto (Japan),. No especifĂ­ca;Fil: Thomas Frölicher (Switzerland),. No especifĂ­ca;Fil: Garschagen, Matthias. No especifĂ­ca;Fil: Gattuso, Jean Pierre. No especifĂ­ca;Fil: Tibig, Lourdes. No especifĂ­ca;Fil: van de Wal, Roderik. Utrecht University; PaĂ­ses BajosFil: Williamson, Phillip. University of Liverpool; Reino UnidoFil: Yu, Rong. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Zhai, Panmao. Chinese Academy of Sciences; RepĂșblica de Chin
    corecore