139 research outputs found

    Ischemia modified albumin and thiol/disulfide balance in patients with Hashimoto’s thyroiditis

    Get PDF
    Hashimoto thyroiditis is a common cause of goiter and acquired hypothyroidism in individuals residing in areas of no iodine deficiency. The fact that the structure of serum albumin exhibits changes in ischemic conditions has paved the way for the discovery of a new serum cardiac ischemia marker, Ischemia Modified Albumin. The other one, thiol/disulphide homeostasis, plays an important part in antioxidative protection, detoxification, cell growth, and apoptosis. In this study, we aimed to investigate both the relationship between Thiol/Disulphide homeostasis and Ischemia Modified Albumin in patients diagnosed with Hashimoto’s Thyroiditis. A total of 70 Hashimoto’’s thyroiditis patients and 50 healthy ones were included in this study. Age, gender, thyroid-stimulating hormone (TSH), anti-thyroid peroxidase (TPO), anti-thyroglobulin (TG) levels were recorded. Ischemia Modified Albumin and thiol-disulphid homeostasis parameters were measured through automated spectrophotometric methods. The ages of individuals included in the study ranged from 35 to 58 years. The native thiol/total thiol were found to be significantly lower in Hashimoto patients when compared to those enrolled in the control group (P < 0.05), whereas the Ischemia Modified Albumin, disulphide, native thiol, total thiol, disulphide/native thiol, and disulphide/total thiol were found to be significantly higher in Hashimoto patients when compared to those in the control (P < 0.05). Increased Ischemia Modified Albumin, native and total thiol, and disulphide levels are related to increased oxidative stress. Although Ischemia Modified Albumin and Thiol-disulphide defense are important oxidative indicators in Hashimoto’s Thyroiditis, many determinants are known to be involved in this process

    Hydration dynamics at fluorinated protein surfaces

    Get PDF
    Water-protein interactions dictate many processes crucial to protein function including folding, dynamics, interactions with other biomolecules, and enzymatic catalysis. Here we examine the effect of surface fluorination on water-protein interactions. Modification of designed coiled-coil proteins by incorporation of 5,5,5-trifluoroleucine or (4S)-2-amino-4-methylhexanoic acid enables systematic examination of the effects of side-chain volume and fluorination on solvation dynamics. Using ultrafast fluorescence spectroscopy, we find that fluorinated side chains exert electrostatic drag on neighboring water molecules, slowing water motion at the protein surface

    Design of an electrochemical micromachining machine

    Get PDF
    Electrochemical micromachining (μECM) is a non-conventional machining process based on the phenomenon of electrolysis. μECM became an attractive area of research due to the fact that this process does not create any defective layer after machining and that there is a growing demand for better surface integrity on different micro applications including microfluidics systems, stress-free drilled holes in automotive and aerospace manufacturing with complex shapes, etc. This work presents the design of a next generation μECM machine for the automotive, aerospace, medical and metrology sectors. It has three axes of motion (X, Y, Z) and a spindle allowing the tool-electrode to rotate during machining. The linear slides for each axis use air bearings with linear DC brushless motors and 2-nm resolution encoders for ultra precise motion. The control system is based on the Power PMAC motion controller from Delta Tau. The electrolyte tank is located at the rear of the machine and allows the electrolyte to be changed quickly. This machine features two process control algorithms: fuzzy logic control and adaptive feed rate. A self-developed pulse generator has been mounted and interfaced with the machine and a wire ECM grinding device has been added. The pulse generator has the possibility to reverse the pulse polarity for on-line tool fabrication.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMPICT- FoF-285614)

    Regulator of G-protein signaling 1 critically supports CD8+ TRM cell-mediated intestinal immunity.

    Get PDF
    Members of the Regulator of G-protein signaling (Rgs) family regulate the extent and timing of G protein signaling by increasing the GTPase activity of Gα protein subunits. The Rgs family member Rgs1 is one of the most up-regulated genes in tissue-resident memory (TRM) T cells when compared to their circulating T cell counterparts. Functionally, Rgs1 preferentially deactivates Gαq, and Gαi protein subunits and can therefore also attenuate chemokine receptor-mediated immune cell trafficking. The impact of Rgs1 expression on tissue-resident T cell generation, their maintenance, and the immunosurveillance of barrier tissues, however, is only incompletely understood. Here we report that Rgs1 expression is readily induced in naïve OT-I T cells in vivo following intestinal infection with Listeria monocytogenes-OVA. In bone marrow chimeras, Rgs1 -/- and Rgs1 +/+ T cells were generally present in comparable frequencies in distinct T cell subsets of the intestinal mucosa, mesenteric lymph nodes, and spleen. After intestinal infection with Listeria monocytogenes-OVA, however, OT-I Rgs1 +/+ T cells outnumbered the co-transferred OT-I Rgs1- /- T cells in the small intestinal mucosa already early after infection. The underrepresentation of the OT-I Rgs1 -/- T cells persisted to become even more pronounced during the memory phase (d30 post-infection). Remarkably, upon intestinal reinfection, mice with intestinal OT-I Rgs1 +/+ TRM cells were able to prevent the systemic dissemination of the pathogen more efficiently than those with OT-I Rgs1 -/- TRM cells. While the underlying mechanisms are not fully elucidated yet, these data thus identify Rgs1 as a critical regulator for the generation and maintenance of tissue-resident CD8+ T cells as a prerequisite for efficient local immunosurveillance in barrier tissues in case of reinfections with potential pathogens

    Transitory electrochemical masking for precision jet processing techniques

    Get PDF
    Electrochemical jet processing techniques provide an efficient method for large area surface structuring and micro-milling, where the metallurgy of the near-surface is assured and not adversely affected by thermal loading. Here, doped electrolytes are specifically developed for jet techniques to exploit the Gaussian energy distribution as found in energy beam processes. This allows up to 26% reduction in dissolution kerf and enhancements of the defined precision metric of up to 284% when compared to standard electrolytes. This is achieved through the filtering of low energy at discrete points within the energy distribution curve. Two fundamental mechanisms of current filtering and refresh rate are proposed and investigated in order to underpin the performance enhancements found using this methodology. This study aims to demonstrate that a step change in process fidelity and flexibility can be achieved through optimisation of the electrochemistry specific to jet processes

    Default and prepayment options pricing and default probability valuation under VG model

    No full text
    In this paper, a new approach, the Variance Gamma (VG) model, which is used to capture unexpected shocks (e.g., Covid-19) in housing markets, is proposed to contribute to the standard option-based mortgage valuation methods. Based on the VG model, the closed-form solutions are performed for pricing mortgage default and prepayment options. It solves the options pricing equations explicitly and illustrates numerical results for both mortgage default and prepayment options' prices. Furthermore, the study enables researchers to monitor the default probability of mortgagors. Analyzing the effect of risks on default and prepayment options using simulations shows that the VG model captures the systematic and systemic (idiosyncratic) risks of default and prepayment options prices with closed-form solutions and computes the mortgage default probabilities. Therefore, it allows lenders a more advanced decision process compared to the standard option-based mortgage valuation method. (C) 2021 Elsevier B.V. All rights reserved

    Diversification benefit and return performance of REITs using CAPM and Fama-French: Evidence from Turkey

    No full text
    This paper analyzes return enhancement patterns of Turkish REITs (T-REITs) from various perspectives over the period of July 2008 and March 2015. We find that T-REITs portfolio provides a slightly lower level of risk diversification benefit than investment trusts, but higher than the banks. The evidence suggests that portfolio managers and investors may not only be able to utilize knowledge deriving from the CAPM, but also utilize information retrieved from Fama-French model due to its relatively better performance on capturing the variation in T-REITs returns. Results also disclose that T-REITs show a degree of diversity in property focus, and reveal mainly defensive, small and financially distressed characteristics. Finally, based on the multiple observations, a case can be made for a possible linkage between property focus and yield improvement/risk taking structure of T-REITs. This study provides implications for the capacity of T-REITS and improve return enhancement capacity in an efficient portfolio management. Keywords: REIT, CAPM, Fama-French model, Turkish REITs, Borsa Istanbul, JEL codes: R30, G12, G1

    Production of hydroxyapatite–bacterial cellulose composite scaffolds with enhanced pore diameters for bone tissue engineering applications

    No full text
    2-s2.0-85074012252Abstract: Bone tissue engineering scaffolds used for the treatment of bone defects are required to be osteoconductive, osteoinductive, osteogenic, biocompatible, and have enough porosity to allow osteointegration, as well as vascularization. It is known that addition of the hydroxyapatite (HAp) to bone tissue scaffolds promotes bone formation by increasing osteoconductivity. Bacterial cellulose (BC) is a highly biocompatible material, and its mechanical properties and fibrous structure allow that it can be used as a bone tissue scaffold; yet, the nano-porous structure of BC (50–200 nm) prevents or limits cell migration and vascularization. In this study, it is intended to take advantage of the porous structure and mechanical strength of BC and osteoconductive properties of HAp for the production of tissue engineering scaffolds. Pore sizes of BC were enhanced to 275 ?m by a novel shredded agar technique, and SaOs-2 cells were shown to migrate between the fibers of the modified BC. It was observed that mineralization of SaOs-2 cells was enhanced on in situ produced HAp-BC nano-composites compared to BC scaffolds. Graphic abstract: [Figure not available: see fulltext.] © 2019, Springer Nature B.V.13FBE008, 2010K120810 113M243 Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAKThis work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) through COST project (113M243) and TUBITAK 2211-C Domestic Graduate Scholarship Program and Ege University Scientific Research Projects Council (13FBE008) and Republic of Turkey Ministry of Development [EGE MATAL; 2010K120810]. The authors thank Ko? University Research Center for Translational Medicine (KUTTAM) and Assist. Prof. Ser?in Karah?seyino?lu for the use of the confocal microscopy.This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) through COST project (113M243) and TUBITAK 2211-C Domestic Graduate Scholarship Program and Ege University Scientific Research Projects Council (13FBE008) and Republic of Turkey Ministry of Development [EGE MATAL; 2010K120810]. The authors thank Koç University Research Center for Translational Medicine (KUTTAM) and Assist. Prof. Serçin Karahüseyinoğlu for the use of the confocal microscopy

    The Impact of Large Investors on the Portfolio Optimization of Single-Family Houses in Housing Markets

    No full text
    As a consequence of the real estate market crash after 2008, large investors invested a significant amount of wealth into single-family houses to construct a portfolio of rental dwellings, whose income is securitized in the capital. In some local housing markets, these investors own remarkable numbers of single-family houses. Furthermore, their trading activities have resulted in a new investment strategy, which exacerbates property wealth concentration and polarization. This new investment strategy and its portfolio optimization inspire curiosity about its influence on housing markets. This paper first aims to find an optimal portfolio strategy by employing an expected utility optimization from the terminal wealth, which adopts a stochastic model that includes a variety of economic states to estimate house prices. Second, it aims to analyze the effect of large investors on the housing market. The results show the investment strategies of large investors depend on the balance among economic state, maintenance cost, rental income, interest rate and investment willingness of large investors to housing and their effect depends on the state of the economy
    corecore