1,144 research outputs found

    Transition Temperature of a Uniform Imperfect Bose Gas

    Full text link
    We calculate the transition temperature of a uniform dilute Bose gas with repulsive interactions, using a known virial expansion of the equation of state. We find that the transition temperature is higher than that of an ideal gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a is the S-wave scattering length, and K_0 is a constant given in the paper. This disagrees with all existing results, analytical or numerical. It agrees exactly in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe

    Thermodynamic properties of confined interacting Bose gases - a renormalization group approach

    Full text link
    A renormalization group method is developed with which thermodynamic properties of a weakly interacting, confined Bose gas can be investigated. Thereby effects originating from a confining potential are taken into account by periodic boundary conditions and by treating the resulting discrete energy levels of the confined degrees of freedom properly. The resulting density of states modifies the flow equations of the renormalization group in momentum space. It is shown that as soon as the characteristic length of confinement becomes comparable to the thermal wave length of a weakly interacting and trapped Bose gas its thermodynamic properties are changed significantly. This is exemplified by investigating characteristic bunching properties of the interacting Bose gas which manifest themselves in the second order coherence factor

    Controlling the cold collision shift in high precision atomic interferometry

    Get PDF
    We present here a new method based on a transfer of population by adiabatic passage that allows to prepare cold atomic samples with a well defined ratio of atomic density and atom number. This method is used to perform a measurement of the cold collision frequency shift in a laser cooled cesium clock at the percent level, which makes the evaluation of the cesium fountains accuracy at the 101610^{-16} level realistic. With an improved set-up, the adiabatic passage would allow measurements of atom number-dependent phase shifts at the 10310^{-3} level in high precision experiments.Comment: 4 pages, 3 figures, 2 table

    Fermi-Bose quantum degenerate ^40 K - ^87 Rb mixture with attractive interaction

    Full text link
    We report on the achievement of simultaneous quantum degeneracy in a mixed gas of fermionic ^40 K and bosonic ^87 Rb. Potassium is cooled to 0.3 times the Fermi temperature by means of an efficient thermalization with evaporatively cooled rubidium. Direct measurement of the collisional cross-section confirms a large interspecies attraction. This interaction is shown to affect the expansion of the Bose-Einstein condensate released form the magnetic trap, where it is immersed in the Fermi sea.Comment: 5 pages, 4 figures, replaced one figure plus some change

    Initial Stages of Bose-Einstein Condensation

    Full text link
    We present the quantum theory for the nucleation of Bose-Einstein condensation in a dilute atomic Bose gas. This quantum theory comfirms the results of the semiclassical treatment, but has the important advantage that both the kinetic and coherent stages of the nucleation process can now be described in a unified way by a single Fokker-Planck equation.Comment: Four pages of ReVTeX and no figure

    The Kohn mode for trapped Bose gases within the dielectric formalism

    Get PDF
    The presence of undamped harmonic center of mass oscillations of a weakly interacting Bose gas in a harmonic trap is demonstrated within the dielectric formalism for a previously introduced finite temperature approximation including exchange. The consistency of the approximation with the Kohn theorem is thereby demonstrated. The Kohn modes are found explicitly, generalizing an earlier zero-temperature result found in the literature. It is shown how the Kohn mode disappears from the single-particle spectrum, while remaining in the density oscillation spectrum, when the temperature increases from below to above the condensation temperature.Comment: 6 pages revte

    Transition temperature of a dilute homogeneous imperfect Bose gas

    Full text link
    The leading-order effect of interactions on a homogeneous Bose gas is theoretically predicted to shift the critical temperature by an amount \Delta\Tc = # a_{scatt} n^{1/3} T_0 from the ideal gas result T_0, where a_{scatt} is the scattering length and n is the density. There have been several different theoretical estimates for the numerical coefficient #. We claim to settle the issue by measuring the numerical coefficient in a lattice simulation of O(2) phi^4 field theory in three dimensions---an effective theory which, as observed previously in the literature, can be systematically matched to the dilute Bose gas problem to reproduce non-universal quantities such as the critical temperature. We find # = 1.32 +- 0.02.Comment: 4 pages, submitted to Phys. Rev. Lett; minor changes due to improvement of analysis in the longer companion pape

    Critical Temperature of a Trapped Interacting Bose Gas in the Local Density Approximation

    Full text link
    The Bose gas in an external potential is studied by means of the local density approximation. An analytical result is derived for the dependence of the critical temperature of Bose-Einstein condensation on the mutual interaction in a generic power-law potential.Comment: 6 pages, latex, no figure

    Probing dipolar effects with condensate shape oscillation

    Full text link
    We discuss the low energy shape oscillations of a magnetic trapped atomic condensate including the spin dipole interaction. When the nominal isotropic s-wave interaction strength becomes tunable through a Feshbach resonance (e.g. as for 85^{85}Rb atoms), anisotropic dipolar effects are shown to be detectable under current experimental conditions [E. A. Donley {\it et al.}, Nature {\bf 412}, 295 (2001)].Comment: revised version, submitte

    Bose condensates in a harmonic trap near the critical temperature

    Full text link
    The mean-field properties of finite-temperature Bose-Einstein gases confined in spherically symmetric harmonic traps are surveyed numerically. The solutions of the Gross-Pitaevskii (GP) and Hartree-Fock-Bogoliubov (HFB) equations for the condensate and low-lying quasiparticle excitations are calculated self-consistently using the discrete variable representation, while the most high-lying states are obtained with a local density approximation. Consistency of the theory for temperatures through the Bose condensation point requires that the thermodynamic chemical potential differ from the eigenvalue of the GP equation; the appropriate modifications lead to results that are continuous as a function of the particle interactions. The HFB equations are made gapless either by invoking the Popov approximation or by renormalizing the particle interactions. The latter approach effectively reduces the strength of the effective scattering length, increases the number of condensate atoms at each temperature, and raises the value of the transition temperature relative to the Popov approximation. The renormalization effect increases approximately with the log of the atom number, and is most pronounced at temperatures near the transition. Comparisons with the results of quantum Monte Carlo calculations and various local density approximations are presented, and experimental consequences are discussed.Comment: 15 pages, 11 embedded figures, revte
    corecore