19 research outputs found
Novel Missense Mutation A789V in IQSEC2 underlies X-Linked intellectual disability in the MRX78 family
Disease gene discovery in neurodevelopmental disorders, including X-linked intellectual disability (XLID) has recently been accelerated by next-generation DNA sequencing approaches. To date, more than 100 human X chromosome genes involved in neuronal signaling pathways and networks implicated in cognitive function have been identified. Despite these advances, the mutations underlying disease in a large number of XLID families remained unresolved. We report the resolution of MRX78, a large family with six affected males and seven affected females, showing X-linked inheritance. Although a previous linkage study had mapped the locus to the short arm of chromosome X (Xp11.4-p11.23), this region contained too many candidate genes to be analyzed using conventional approaches. However, our X-chromosome exome resequencing, bioinformatics analysis and inheritance testing revealed a missense mutation (c.C2366T, p.A789V) in IQSEC2, encoding a neuronal GDP-GTP exchange factor for Arf family GTPases (ArfGEF) previously implicated in XLID. Molecular modeling of IQSEC2 revealed that the A789V substitution results in the insertion of a larger side-chain into a hydrophobic pocket in the catalytic Sec7 domain of IQSEC2. The A789V change is predicted to result in numerous clashes with adjacent amino acids and disruption of local folding of the Sec7 domain. Consistent with this finding, functional assays revealed that recombinant IQSEC2A789V was not able to catalyze GDP-GTP exchange on Arf6 as efficiently as wild-type IQSEC2. Taken together, these results strongly suggest that the A789V mutation in IQSEC2 is the underlying cause of XLID in the MRX78 family
Erratum to: Mutation screening in 86 known X-linked mental retardation genes by droplet-based multiplex PCR and massive parallel sequencing
Item does not contain fulltext[This corrects the article DOI: 10.1007/s11568-010-9137-y.].1 december 200
National trends in total cholesterol obscure heterogeneous changes in HDL and non-HDL cholesterol and total-to-HDL cholesterol ratio : a pooled analysis of 458 population-based studies in Asian and Western countries
Background: Although high-density lipoprotein (HDL) and non-HDL cholesterol have opposite associations with coronary heart disease, multi-country reports of lipid trends only use total cholesterol (TC). Our aim was to compare trends in total, HDL and nonHDL cholesterol and the total-to-HDL cholesterol ratio in Asian and Western countries. Methods: We pooled 458 population-based studies with 82.1 million participants in 23 Asian and Western countries. We estimated changes in mean total, HDL and non-HDL cholesterol and mean total-to-HDL cholesterol ratio by country, sex and age group. Results: Since similar to 1980, mean TC increased in Asian countries. In Japan and South Korea, the TC rise was due to rising HDL cholesterol, which increased by up to 0.17 mmol/L per decade in Japanese women; in China, it was due to rising non-HDL cholesterol. TC declined in Western countries, except in Polish men. The decline was largest in Finland and Norway, at similar to 0.4 mmol/L per decade. The decline in TC in most Western countries was the net effect of an increase in HDL cholesterol and a decline in non-HDL cholesterol, with the HDL cholesterol increase largest in New Zealand and Switzerland. Mean total-to-HDL cholesterol ratio declined in Japan, South Korea and most Western countries, by as much as similar to 0.7 per decade in Swiss men (equivalent to similar to 26% decline in coronary heart disease risk per decade). The ratio increased in China. Conclusions: HDL cholesterol has risen and the total-to-HDL cholesterol ratio has declined in many Western countries, Japan and South Korea, with only a weak correlation with changes in TC or non-HDL cholesterol.Peer reviewe
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe
THOC2 Mutations Implicate mRNA-Export Pathway in X-Linked Intellectual Disability
Export of mRNA from the cell nucleus to the cytoplasm is essential for protein synthesis, a process vital to all living eukaryotic cells. mRNA export is highly conserved and ubiquitous. Mutations affecting mRNA and mRNA processing or export factors, which cause aberrant retention of mRNAs in the nucleus, are thus emerging as contributors to an important class of human genetic disorders. Here, we report that variants in THOC2, which encodes a subunit of the highly conserved TREX mRNA-export complex, cause syndromic intellectual disability (ID). Affected individuals presented with variable degrees of ID and commonly observed features included speech delay, elevated BMI, short stature, seizure disorders, gait disturbance, and tremors. X chromosome exome sequencing revealed four missense variants in THOC2 in four families, including family MRX12, first ascertained in 1971. We show that two variants lead to decreased stability of THOC2 and its TREX-complex partners in cells derived from the affected individuals. Protein structural modeling showed that the altered amino acids are located in the RNA-binding domains of two complex THOC2 structures, potentially representing two different intermediate RNA-binding states of THOC2 during RNA transport. Our results show that disturbance of the canonical molecular pathway of mRNA export is compatible with life but results in altered neuronal development with other comorbidities
THOC2 Mutations Implicate mRNA-Export Pathway in X-Linked Intellectual Disability
Export of mRNA from the cell nucleus to the cytoplasm is essential for protein synthesis, a process vital to all living eukaryotic cells. mRNA export is highly conserved and ubiquitous. Mutations affecting mRNA and mRNA processing or export factors, which cause aberrant retention of mRNAs in the nucleus, are thus emerging as contributors to an important class of human genetic disorders. Here, we report that variants in THOC2, which encodes a subunit of the highly conserved TREX mRNA-export complex, cause syndromic intellectual disability (ID). Affected individuals presented with variable degrees of ID and commonly observed features included speech delay, elevated BMI, short stature, seizure disorders, gait disturbance, and tremors. X chromosome exome sequencing revealed four missense variants in THOC2 in four families, including family MRX12, first ascertained in 1971. We show that two variants lead to decreased stability of THOC2 and its TREX-complex partners in cells derived from the affected individuals. Protein structural modeling showed that the altered amino acids are located in the RNA-binding domains of two complex THOC2 structures, potentially representing two different intermediate RNA-binding states of THOC2 during RNA transport. Our results show that disturbance of the canonical molecular pathway of mRNA export is compatible with life but results in altered neuronal development with other comorbidities.publisher: Elsevier
articletitle: THOC2 Mutations Implicate mRNA-Export Pathway in X-Linked Intellectual Disability
journaltitle: The American Journal of Human Genetics
articlelink: http://dx.doi.org/10.1016/j.ajhg.2015.05.021
content_type: article
copyright: Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.status: publishe
Mutations in DDX3X are a common cause of unexplained intellectual disability with gender-specific effects on wnt signaling
Intellectual disability (ID) affects approximately 1%–3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%–3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations