24 research outputs found
Competitive effects between stationary chemical reaction centres: a theory based on off-center monopoles.
The subject of this paper is competitive effects between multiple reaction sinks. A theory based on off-center monopoles is developed for the steady-state diffusion equation and for the convection-diffusion equation with a constant flow field. The dipolar approximation for the diffusion equation with two equal reaction centres is compared with the exact solution. The former turns out to be remarkably accurate, even for two touching spheres. Numerical evidence is presented to show that the same holds for larger clusters (with more than two spheres). The theory is extended to the convection-diffusion equation with a constant flow field. As one increases the convective velocity, the competitive effects between the reactive centres gradually become less significant. This is demonstrated for a number of cluster configurations. At high flow velocities, the current methodology breaks down. Fixing this problem will be the subject of future research. The current method is useful as an easy-to-use tool for the calibration of other more complicated models in mass and/or heat transfer
Longitudinal instability of slurry pipeline flow
This paper deals with the flow of solid/liquid mixtures through long-distance pipelines. Such flows can be destabilized by the formation of local plugs which may impede or even block the flow. Plugs may develop at the interface between regions of different mean concentration. The driving force for the development of such plugs is the existence of local gradients of the axial flux of solids.A mathematical model is developed which describes this mode of plug formation in slurry pipelines. Several assumptions and approximations enable us to reduce the 3D continuity equation of the solid particles to an effective 1D-equation that contains a concentration-dependent flux function. The latter equation is solved numerically.Illustrative calculations lead to the conclusion that the accumulation of material in a plug does not con- tinue without limit but instead levels off at values that are pumpable under most practical conditions, provided that a certain margin of overdesign is in place
Status Update and Interim Results from the Asymptomatic Carotid Surgery Trial-2 (ACST-2)
Objectives: ACST-2 is currently the largest trial ever conducted to compare carotid artery stenting (CAS) with carotid endarterectomy (CEA) in patients with severe asymptomatic carotid stenosis requiring revascularization. Methods: Patients are entered into ACST-2 when revascularization is felt to be clearly indicated, when CEA and CAS are both possible, but where there is substantial uncertainty as to which is most appropriate. Trial surgeons and interventionalists are expected to use their usual techniques and CE-approved devices. We report baseline characteristics and blinded combined interim results for 30-day mortality and major morbidity for 986 patients in the ongoing trial up to September 2012. Results: A total of 986 patients (687 men, 299 women), mean age 68.7 years (SD ± 8.1) were randomized equally to CEA or CAS. Most (96%) had ipsilateral stenosis of 70-99% (median 80%) with contralateral stenoses of 50-99% in 30% and contralateral occlusion in 8%. Patients were on appropriate medical treatment. For 691 patients undergoing intervention with at least 1-month follow-up and Rankin scoring at 6 months for any stroke, the overall serious cardiovascular event rate of periprocedural (within 30 days) disabling stroke, fatal myocardial infarction, and death at 30 days was 1.0%. Conclusions: Early ACST-2 results suggest contemporary carotid intervention for asymptomatic stenosis has a low risk of serious morbidity and mortality, on par with other recent trials. The trial continues to recruit, to monitor periprocedural events and all types of stroke, aiming to randomize up to 5,000 patients to determine any differential outcomes between interventions. Clinical trial: ISRCTN21144362. © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved
Recommended from our members
Layer Formation in Semiconvection
Layer formation in a thermally destabilized fluid with stable density
gradient has been observed in laboratory experiments and has been proposed as a
mechanism for mixing molecular weight in late stages of stellar evolution in
regions which are unstable to semiconvection. It is not yet known whether such
layers can exist in a very low viscosity fluid: this work undertakes to address
that question. Layering is simulated numerically both at high Prandtl number
(relevant to the laboratory) in order to describe the onset of layering
intability, and the astrophysically important case of low Prandtl number. It is
argued that the critical stability parameter for interfaces between layers, the
Richardson number, increases with decreasing Prandtl number. Throughout the
simulations the fluid has a tendency to form large scale flows in the first
convecting layer, but only at low Prandtl number do such structures have
dramatic consequences for layering. These flows are shown to drive large
interfacial waves whose breaking contributes to significant mixing across the
interface. An effective diffusion coefficient is determined from the simulation
and is shown to be much greater than the predictions of both an enhanced
diffusion model and one which specifically incorporates wave breaking. The
results further suggest that molecular weight gradient interfaces are
ineffective barriers to mixing even when specified as initial conditions, such
as would arise when a compositional gradient is redistributed by another
mechanism than buoyancy, such as rotation or internal waves
Recommended from our members
Competitive effects between stationary chemical reaction centres: a theory based on off-center monopoles.
The subject of this paper is competitive effects between multiple reaction sinks. A theory based on off-center monopoles is developed for the steady-state diffusion equation and for the convection-diffusion equation with a constant flow field. The dipolar approximation for the diffusion equation with two equal reaction centres is compared with the exact solution. The former turns out to be remarkably accurate, even for two touching spheres. Numerical evidence is presented to show that the same holds for larger clusters (with more than two spheres). The theory is extended to the convection-diffusion equation with a constant flow field. As one increases the convective velocity, the competitive effects between the reactive centres gradually become less significant. This is demonstrated for a number of cluster configurations. At high flow velocities, the current methodology breaks down. Fixing this problem will be the subject of future research. The current method is useful as an easy-to-use tool for the calibration of other more complicated models in mass and/or heat transfer
A multiscale model for tropical intraseasonal oscillations
The tropical intraseasonal 40- to 50-day oscillation (TIO) is the dominant component of variability in the tropical atmosphere with remarkable planetary-scale circulation generated as envelopes of complex multiscale processes. A new multiscale model is developed here that clearly demonstrates the fashion in which planetary-scale circulations sharing many features in common with the observational record for the TIO are generated on intraseasonal time scales through the upscale transfer of kinetic and thermal energy generated by wave trains of organized synoptic-scale circulations having features in common with observed superclusters. The appeal of the multiscale models developed below is their firm mathematical underpinnings, simplicity, and analytic tractability while remaining self-consistent with key features of the observational record. The results below demonstrate, in a transparent fashion, the central role of organized vertically tilted synoptic-scale circulations in generating a planetary circulation resembling the TIO
Recommended from our members
The Non-Traditional Coriolis Terms and Tropical Convective Clouds
The full, three-dimensional Coriolis force includes the familiar sine-of-latitude terms as well as frequently dropped cosine-of-latitude terms [nontraditional Coriolis terms (NCT)]. The latter are often ignored because they couple the zonal and vertical momentum equations that in the large-scale limit of weak vertical velocity are considered insignificant almost everywhere. Here, we ask whether equatorial mesoscale clouds that fall outside the large-scale limit are affected by the NCT. A simple scaling indicates that a Lagrangian parcel convecting at 10 m s21 through the depth of the troposphere should be deflected over 2 km to the west. To understand the real impact of NCT, we develop a mathematical framework that describes an azimuthally symmetric convective circulation with an analytical expression for an incompressible poloidal flow. Because the model incorporates the full three-dimensional flow associated with convection, it uniquely predicts not only the westward tilt of clouds but also a meridional diffluence of western cloud outflow. To test these predictions, we perform a set of cloud-resolving simulations whose results show preferential lifting of surface parcels with positive zonal momentum and zonal asymmetry in convective strength. RCE simulations show changes to the organization of coherent precipitation regions and a decrease in mean convective intensity of approximately 2 m s21 above the freezing level. An additional pair of dry cloud-resolving simulations designed to mimic the steady-state flow of the model show maximum perturbations to the upper-level zonal flow of 8 m s21. Together, the numerical and analytic results suggest the NCT consequentially alter equatorial mesoscale convective circulations and should be considered in conceptual models