46 research outputs found
Investigations on endothelial maturation and anticoagulant properties
Mature endothelial cells are terminally differentiated cells with a low proliferative potential and their capacity to substitute damaged endothelium is limited. Accumulating evidence in the last years indicates that mammalian organisms contain a unique subtype of circulating, bone marrow-derived cells with properties similar to those of embryonal angioblasts. These cells were called endothelial progenitor cells (EPCs). In the present work, we have studied the role of B-Raf and C-Raf, two members of a central intracellular signalling pathway, for the proliferation and differentiation of mouse embryonic EPCs. A further purpose of the study was to evaluate the anticoagulant properties of the mature endothelium and in particular the role of Tissue factor pathway inhibitor (TFPI).
We prepared gene constructs allowing us to activate or inhibit the downstream signalling of B-Raf and C-Raf, and on the other side we have used RNA interference to knock down these proteins. We found that both B-Raf and C-Raf are engaged in the proliferation of the eEPCs. However, B-Raf is mostly responsible for the differentiation, and cAMP is activating the differentiation through B-Raf, but not through C-Raf.
To delineate the participation of the endothelium in coagulation, the role of native TFPI and its mutated forms in intravascular fibrin formation was analyzed. Particular attention was given to TFPI mutants being resistant towards cleavage by leukocyte proteases that might inactivate TFPI under physiological and pathophysiological conditions. The novel insights on the differentiation and proliferation of the endothelial progenitor cells obtained in the present work, may give us the opportunity to regulate their functionality in certain cases, and eventually using them as therapeutic agents in some kind of diseases (e.g. myocardial infarction, stroke)
Types of information systems and technologies of a company
Nowadays in the age of global economy, information becomes a key resource of management and can be determined as a key competitive advantage of a company. For most businesses, there is a variety of requirements for information. The paper presents types of information systems and technologies in the effective administrative decisionmaking that promotes increase of a company's competitiveness. The emphasis is placed on types of information systems at different levels of management and their functional mission from the point of view of administrative decisions made at a particular level of management. Various researchers have given classifications of information systems and technologies, but their classifications have no integrity. The author proposes a generalized classification of information systems and technologies, based on different studies, theories, methodologies.В настоящее время в эпоху глобальной экономики, информация становится ключевым ресурсом управления и может быть определена в качестве ключевого конкурентного преимущества компании. Для большинства предприятий, существует множество требований к информации. В статье представлены виды информационных систем и технологий в эффективном принятии административных решений, что способствует повышению конкурентоспособности компании. Акцент делается на виды информационных систем на различных уровнях управления и их функциональном предназначении с точки зрения управленческих решений, в зависимости от уровня управления. Классификация информационных систем и технологий является предметом многих исследований, но обобщенной классификации пока не было представлено. Автор предлагает обобщенную классификацию информационных систем и технологий, основанную на различных исследованиях, теориях, методиках
Влияние исходного структурно-фазового состояния низкоуглеродистых малолегированных сталей на формирование структуры и свойств лазерных сварных соединений
В результате комплексных структурных исследований показано, что исходное структурно-фазовое состояние определяет формирование разного типа структур в зоне сплавления, зонах термического влияния и разный уровень микротвердости стали. В стали с меньшим содержанием углерода и исходной мелкозернистой, однородной феррито-бейнитной структурой при лазерной сварке сформирован сварной шов с лучшими механическими свойствами за счет
получения в структуре феррита и гранулярного бейнита, чем в стали с более высоким содержанием углерода и феррито-перлитной крупнозернистой структурой.As a result of complex structural studies, it has been shown that the initial structural-phase state determines the formation of different types of structures in the fusion zone, heat-affected zones and different levels of steel microhardness. Steels with a lower carbon content and an initial fine-grained homogeneous ferrite-bainite structure during laser welding form a weld with better mechanical properties due to the production of ferrite and granular bainite in the structure than steels with a higher carbon content and a ferrite-pearlite coarse-grained structure
Chemokines and galectins form heterodimers to modulate inflammation
Chemokines and galectins are simultaneously upregulated and mediate leukocyte recruitment during inflammation. Until now, these effector molecules have been considered to function independently. Here, we tested the hypothesis that they form molecular hybrids. By systematically screening chemokines for their ability to bind galectin‐1 and galectin‐3, we identified several interacting pairs, such as CXCL12 and galectin‐3. Based on NMR and MD studies of the CXCL12/galectin‐3 heterodimer, we identified contact sites between CXCL12 β‐strand 1 and Gal‐3 F‐face residues. Mutagenesis of galectin‐3 residues involved in heterodimer formation resulted in reduced binding to CXCL12, enabling testing of functional activity comparatively. Galectin‐3, but not its mutants, inhibited CXCL12‐induced chemotaxis of leukocytes and their recruitment into the mouse peritoneum. Moreover, galectin‐3 attenuated CXCL12‐stimulated signaling via its receptor CXCR4 in a ternary complex with the chemokine and receptor, consistent with our structural model. This first report of heterodimerization between chemokines and galectins reveals a new type of interaction between inflammatory mediators that can underlie a novel immunoregulatory mechanism in inflammation. Thus, further exploration of the chemokine/galectin interactome is warranted
Identification of a non-canonical chemokine-receptor pathway suppressing regulatory T cells to drive atherosclerosis
CCL17 is produced by conventional dendritic cells, signals through CCR4 on regulatory T (Treg) cells and drives atherosclerosis by suppressing Treg functions through yet undefined mechanisms. Here we show that conventional dendritic cells from CCL17-deficient mice display a pro-tolerogenic phenotype and transcriptome that is not phenocopied in mice lacking its cognate receptor CCR4. In the plasma of CCL17-deficient mice, CCL3 was the only decreased cytokine/chemokine. We found that CCL17 signaled through CCR8 as an alternate high-affinity receptor, which induced CCL3 expression and suppressed Treg functions in the absence of CCR4. Genetic ablation of CCL3 and CCR8 in CD4+ T cells reduced CCL3 secretion, boosted FoxP3+ Treg numbers and limited atherosclerosis. Conversely, CCL3 administration exacerbated atherosclerosis and restrained Treg differentiation. In symptomatic versus asymptomatic human carotid atheroma, CCL3 expression was increased, whereas FoxP3 expression was reduced. Together, we identified a non-canonical chemokine pathway whereby CCL17 interacts with CCR8 to yield a CCL3-dependent suppression of atheroprotective Treg cells. Doring, van der Vorst, Yan, Neideck et al. present a non-canonical chemokine pathway involving CCL17 signaling through CCR8, which induces CCL3 expression independent of CCR4 and suppresses the functions of atheroprotective Treg cells
Vascular CXCR4 Limits Atherosclerosis by Maintaining Arterial Integrity Evidence From Mouse and Human Studies
BACKGROUND: The CXCL12/CXCR4 chemokine ligand/receptor axis controls (progenitor) cell homeostasis and trafficking. So far, an atheroprotective role of CXCL12/CXCR4 has only been implied through pharmacological intervention, in particular, because the somatic deletion of the CXCR4 gene in mice is embryonically lethal. Moreover, cell-specific effects of CXCR4 in the arterial wall and underlying mechanisms remain elusive, prompting us to investigate the relevance of CXCR4 in vascular cell types for atheroprotection. METHODS: We examined the role of vascular CXCR4 in atherosclerosis and plaque composition by inducing an endothelial cell (BmxCreERT2-driven)-specific or smooth muscle cell (SMC, SmmhcCreERT2-or TaglnCre-driven)-specific deficiency of CXCR4 in an apolipoprotein E-deficient mouse model. To identify underlying mechanisms for effects of CXCR4, we studied endothelial permeability, intravital leukocyte adhesion, involvement of the Akt/WNT/beta-catenin signaling pathway and relevant phosphatases in VE-cadherin expression and function, vascular tone in aortic rings, cholesterol efflux from macrophages, and expression of SMC phenotypic markers. Finally, we analyzed associations of common genetic variants at the CXCR4 locus with the risk for coronary heart disease, along with CXCR4 transcript expression in human atherosclerotic plaques. RESULTS: The cell-specific deletion of CXCR4 in arterial endothelial cells (n=1215) or SMCs (n=13-24) markedly increased atherosclerotic lesion formation in hyperlipidemic mice. Endothelial barrier function was promoted by CXCL12/\CXCR4, which triggered Akt/WNT/beta-catenin signaling to drive VE-cadherin expression and stabilized junctional VE-cadherin complexes through associated phosphatases. Conversely, endothelial CXCR4 deficiency caused arterial leakage and inflammatory leukocyte recruitment during atherogenesis. In arterial SMCs, CXCR4 sustained normal vascular reactivity and contractile responses, whereas CXCR4 deficiency favored a synthetic phenotype, the occurrence of macrophage-like SMCs in the lesions, and impaired cholesterol efflux. Regression analyses in humans (n=259 796) identified the C-allele at rs2322864 within the CXCR4 locus to be associated with increased risk for coronary heart disease. In line, C/C risk genotype carriers showed reduced CXCR4 expression in carotid artery plaques (n=188), which was furthermore associated with symptomatic disease. CONCLUSIONS: Our data clearly establish that vascular CXCR4 limits atherosclerosis by maintaining arterial integrity, preserving endothelial barrier function, and a normal contractile SMC phenotype. Enhancing these beneficial functions of arterial CXCR4 by selective modulators might open novel therapeutic options in atherosclerosis
A Neutrophil Timer Coordinates Immune Defense and Vascular Protection
Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection. Neutrophils display circadian oscillations in numbers and phenotype in the circulation. Adrover and colleagues now identify the molecular regulators of neutrophil aging and show that genetic disruption of this process has major consequences in immune cell trafficking, anti-microbial defense, and vascular health.This study was supported by Intramural grants from A∗STAR to L.G.N., BES-2013-065550 to J.M.A., BES-2010-032828 to M.C.-A, and JCI-2012-14147 to L.A.W (all from Ministerio de Economía, Industria y Competitividad; MEIC). Additional MEIC grants were SAF2014-61993-EXP to C.L.-R.; SAF2015-68632-R to M.A.M. and SAF-2013-42920R and SAF2016-79040Rto D.S. D.S. also received 635122-PROCROP H2020 from the European Commission and ERC CoG 725091 from the European Research Council (ERC). ERC AdG 692511 PROVASC from the ERC and SFB1123-A1 from the Deutsche Forschungsgemeinschaft were given to C.W.; MHA VD1.2/81Z1600212 from the German Center for Cardiovascular Research (DZHK) was given to C.W. and O.S.; SFB1123-A6 was given to O.S.; SFB914-B08 was given to O.S. and C.W.; and INST 211/604-2, ZA 428/12-1, and ZA 428/13-1 were given to A.Z. This study was also supported by PI12/00494 from Fondo de Investigaciones Sanitarias (FIS) to C.M.; PI13/01979, Cardiovascular Network grant RD 12/0042/0054, and CIBERCV to B.I.; SAF2015-65607-R, SAF2013-49662-EXP, and PCIN-2014-103 from MEIC; and co-funding by Fondo Europeo de Desarrollo Regional (FEDER) to A.H. The CNIC is supported by the MEIC and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505)
A Neutrophil Timer Coordinates Immune Defense and Vascular Protection
Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection.We thank all members of the Hidalgo Lab for discussion and insightful comments; J.M. Ligos, R. Nieto, and M. Viton for help with sorting and cytometric analyses; I. Ortega and E. Santos for animal husbandry; D. Rico, M.J. Gomez, C. Torroja, and F. Sanchez-Cabo for insightful comments and help with transcriptomic analyses; V. Labrador, E. Arza, A.M. Santos, and the Microscopy Unit of the CNIC for help with microscopy; S. Aznar-Benitah, U. Albrecht, Q.-J. Meng, B. Staels, and H. Duez for the generous gift of mice; J.A. Enriquez and J. Avila for scientific insights; and J.M. Garcia and A. Diez de la Cortina for art. This study was supported by Intramural grants from A* STAR to L.G.N., BES-2013-065550 to J.M.A., BES-2010-032828 to M.C.-A, and JCI-2012-14147 to L.A.W (all from Ministerio de Economia, Industria y Competitividad; MEIC). Additional MEIC grants were SAF2014-61993-EXP to C.L.-R.; SAF2015-68632-R to M.A.M. and SAF-2013-42920R and SAF2016-79040Rto D.S. D.S. also received 635122-PROCROP H2020 from the European Commission and ERC CoG 725091 from the European Research Council (ERC). ERC AdG 692511 PROVASC from the ERC and SFB1123-A1 from the Deutsche Forschungsgemeinschaft were given to C.W.; MHA VD1.2/81Z1600212 from the German Center for Cardiovascular Research (DZHK) was given to C.W. and O.S.; SFB1123-A6 was given to O.S.; SFB914-B08 was given to O.S. and C.W.; and INST 211/604-2, ZA 428/12-1, and ZA 428/13-1 were given to A.Z. This study was also supported by PI12/00494 from Fondo de Investigaciones Sanitarias (FIS) to C.M.; PI13/01979, Cardiovascular Network grant RD 12/0042/0054, and CIBERCV to B.I.; SAF2015-65607-R, SAF2013-49662-EXP, and PCIN-2014-103 from MEIC; and co-funding by Fondo Europeo de Desarrollo Regional (FEDER) to A.H. The CNIC is supported by the MEIC and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505).S