1,212 research outputs found
ERS-1 SAR data processing
To take full advantage of the synthetic aperature radar (SAR) to be flown on board the European Space Agency's Remote Sensing Satellite (ERS-1) (1989) and the Canadian Radarsat (1990), the implementation of a receiving station in Alaska is being studied to gather and process SAR data pertaining in particular to regions within the station's range of reception. The current SAR data processing requirement is estimated to be on the order of 5 minutes per day. The Interim Digital Sar Processor (IDP) which was under continual development through Seasat (1978) and SIR-B (1984) can process slightly more than 2 minutes of ERS-1 data per day. On the other hand, the Advanced Digital SAR Processore (ADSP), currently under development for the Shuttle Imaging Radar C (SIR-C, 1988) and the Venus Radar Mapper, (VMR, 1988), is capable of processing ERS-1 SAR data at a real time rate. To better suit the anticipated ERS-1 SAR data processing requirement, both a modified IDP and an ADSP derivative are being examined. For the modified IDP, a pipelined architecture is proposed for the mini-computer plus array processor arrangement to improve throughout. For the ADSP derivative, a simplified version is proposed to enhance ease of implementation and maintainability while maintaing real time throughput rates. These processing systems are discussed and evaluated
The Numerical Simulation of Radiative Shocks I: The elimination of numerical shock instabilities using a localized oscillation filter
We address a numerical instability that arises in the directionally split
computation of hydrodynamic flows when shock fronts are parallel to a grid
plane. Transverse oscillations in pressure, density and temperature are
produced that are exacerbated by thermal instability when cooling is present,
forming post--shock `stripes'. These are orthogonal to the classic post--shock
'ringing' fluctuations. The resulting post--shock `striping' substantially
modifies the flow. We discuss three different methods to resolve this problem.
These include (1) a method based on artificial viscosity; (2) grid--jittering
and (3) a new localized oscillation filter that acts on specific grid cells in
the shock front. These methods are tested using a radiative wall shock problem
with an embedded shear layer. The artificial viscosity method is unsatisfactory
since, while it does reduce post--shock ringing, it does not eliminate the
stripes and the excessive shock broadening renders the calculation of cooling
inaccurate, resulting in an incorrect shock location. Grid--jittering
effectively counteracts striping. However, elsewhere on the grid, the shear
layer is unphysically diffused and this is highlighted in an extreme case. The
oscillation filter method removes stripes and permits other high velocity
gradient regions of the flow to evolve in a physically acceptable manner. It
also has the advantage of only acting on a small fraction of the cells in a two
or three dimensional simulation and does not significantly impair performance.Comment: 20 pages, 6 figures, revised version submitted to ApJ Supplement
Serie
Linkage between Accretion Disks and Blazars
The magnetic field in an accretion disk is estimated assuming that all of the
angular momentum within prescribed accretion disk radii is removed by a jet.
The magnetic field estimated at the base of the jet is extrapolated to the
blazar emission region using a model for a relativistic axisymmetric jet
combined with some simplifying assumptions based on the relativistic nature of
the flow. The extrapolated magnetic field is compared with estimates based upon
the synchrotron and inverse Compton emission from three blazars, MKN 501, MKN
421 and PKS 2155-304. The magnetic fields evaluated from pure synchrotron self-
Compton models are inconsistent with the magnetic fields extrapolated in this
way. However, in two cases inverse Compton models in which a substantial part
of the soft photon field is generated locally agree well, mainly because these
models imply magnetic field strengths which are closer to being consistent with
Poynting flux dominated jets. This comparison is based on estimating the mass
accretion rate from the jet energy flux. Further comparisons along these lines
will be facilitated by independent estimates of the mass accretion rate in
blazars and by more detailed models for jet propagation near the black hole.Comment: Submiteed to the Astrophysics & Space Science special issue on the
5th Stromlo Symposiu
Wideband high efficiency optical modulator Final report, 15 Feb. 1966 - 15 Mar. 1967
Design of wideband high efficiency optical modulation system tested over 100-MHz ban
Corrigendum to “Do successor effects in reading reflect lexical parafoveal processing? Evidence from corpus-based and experimental eye movement data” [J. Mem. Lang. 79–80 (2015) 76–96].
In the past, most research on eye movements during reading involved a limited number of subjects reading sentences with specific experimental manipulations on target words. Such experiments usually only analyzed eye-movements measures on and around the target word. Recently, some researchers have started collecting larger data sets involving large and diverse groups of subjects reading large numbers of sentences, enabling them to consider a larger number of influences and study larger and more representative subject groups. In such corpus studies, most of the words in a sentence are analyzed. The complexity of the design of corpus studies and the many potentially uncontrolled influences in such studies pose new issues concerning the analysis methods and interpretability of the data. In particular, several corpus studies of reading have found an effect of successor word (n + 1) frequency on current word (n) fixation times, while studies employing experimental manipulations tend not to. The general interpretation of corpus studies suggests that readers obtain parafoveal lexical information from the upcoming word before they have finished identifying the current word, while the experimental manipulations shed doubt on this claim. In the present study, we combined a corpus analysis approach with an experimental manipulation (i.e., a parafoveal modification of the moving mask technique, Rayner & Bertera, 1979), so that, either (a) word n + 1, (b) word n + 2, (c) both words, or (d) neither word was masked. We found that denying preview for either or both parafoveal words increased average fixation times. Furthermore, we found successor effects similar to those reported in the corpus studies. Importantly, these successor effects were found even when the parafoveal word was masked, suggesting that apparent successor frequency effects may be due to causes that are unrelated to lexical parafoveal preprocessing. We discuss the implications of this finding both for parallel and serial accounts of word identification and for the interpretability of large correlational studies of word identification in reading in general
Towards a New Standard Theory for Astrophysical Disk Accretion
We briefly review recent developments in black hole accretion disk theory,
placing new emphasis on the vital role played by magnetohydrodynamic (MHD)
stresses in transporting angular momentum. The apparent universality of
accretion-related outflow phenomena is a strong indicator that vertical
transport of angular momentum by large-scale MHD torques is important and may
even dominate radial transport by small-scale MHD turbulence. This leads to an
enhanced overall rate of angular momentum transport and allows accretion of
matter to proceed at an interesting rate. Furthermore, we argue that when
vertical transport is important, the radial structure of the accretion disk is
modified and this affects the disk emission spectrum. We present a simple model
demonstrating that energetic, magnetically-driven outflows give rise to a disk
spectrum that is dimmer and redder than a standard accretion disk accreting at
the same rate. We briefly discuss the implications of this key result for
accreting black holes in different astrophysical systems.Comment: Accepted for publication as brief review in Mod. Phys. Let.
Clinical applications of robotic technology in vascular and endovascular surgery
BackgroundEmerging robotic technologies are increasingly being used by surgical disciplines to facilitate and improve performance of minimally invasive surgery. Robot-assisted intervention has recently been introduced into the field of vascular surgery to potentially enhance laparoscopic vascular and endovascular capabilities. The objective of this study was to review the current status of clinical robotic applications in vascular surgery.MethodsA systematic literature search was performed in order to identify all published clinical studies related to robotic implementation in vascular intervention. Web-based search engines were searched using the keywords “surgical robotics,” “robotic surgery,” “robotics,” “computer assisted surgery,” and “vascular surgery” or “endovascular” for articles published between January 1990 and November 2009. An evaluation and critical overview of these studies is reported. In addition, an analysis and discussion of supporting evidence for robotic computer-enhanced telemanipulation systems in relation to their applications in laparoscopic vascular and endovascular surgery was undertaken.ResultsSeventeen articles reporting on clinical applications of robotics in laparoscopic vascular and endovascular surgery were detected. They were either case reports or retrospective patient series and prospective studies reporting laparoscopic vascular and endovascular treatments for patients using robotic technology. Minimal comparative clinical evidence to evaluate the advantages of robot-assisted vascular procedures was identified. Robot-assisted laparoscopic aortic procedures have been reported by several studies with satisfactory results. Furthermore, the use of robotic technology as a sole modality for abdominal aortic aneurysm repair and expansion of its applications to splenic and renal artery aneurysm reconstruction have been described. Robotically steerable endovascular catheter systems have potential advantages over conventional catheterization systems. Promising results from applications in cardiac interventions and preclinical studies have urged their use in vascular surgery. Although successful applications in endovascular repair of abdominal aortic aneurysm and lower extremity arterial disease have been reported, published clinical experience with the endovascular robot is limited.ConclusionsRobotic technology may enhance vascular surgical techniques given preclinical evidence and early clinical reports. Further clinical studies are required to quantify its advantages over conventional treatments and define its role in vascular and endovascular surgery
- …