233 research outputs found

    Quantum Hall Ferromagnetism in a Two-Dimensional Electron System

    Full text link
    Experiments on a nearly spin degenerate two-dimensional electron system reveals unusual hysteretic and relaxational transport in the fractional quantum Hall effect regime. The transition between the spin-polarized (with fill fraction ν=1/3\nu = 1/3) and spin-unpolarized (ν=2/5\nu = 2/5) states is accompanied by a complicated series of hysteresis loops reminiscent of a classical ferromagnet. In correlation with the hysteresis, magnetoresistance can either grow or decay logarithmically in time with remarkable persistence and does not saturate. In contrast to the established models of relaxation, the relaxation rate exhibits an anomalous divergence as temperature is reduced. These results indicate the presence of novel two-dimensional ferromagnetism with a complicated magnetic domain dynamic.Comment: 15 pages, 5 figure

    Electrical control of the exciton-biexciton splitting in a single self-assembled InGaAs quantum dots

    Get PDF
    We report on single InGaAs quantum dots embedded in a lateral electric field device. By applying a voltage we tune the neutral exciton transition into resonance with the biexciton using the quantum confined Stark effect. The results are compared to theoretical calculations of the relative energies of exciton and biexciton. Cascaded decay from the manifold of single exciton-biexciton states has been predicted to be a new concept to generate entangled photon pairs on demand without the need to suppress the fine structures splitting of the neutral exciton

    Activated Transport in the individual Layers that form the νT\nu_T=1 Exciton Condensate

    Full text link
    We observe the total filling factor νT\nu_{T}=1 quantum Hall state in a bilayer two-dimensional electron system with virtually no tunnelling. We find thermally activated transport in the balanced system with a monotonic increase of the activation energy with decreasing d/Bd/\ell_B below 1.65. In the imbalanced system we find activated transport in each of the layers separately, yet the activation energies show a striking asymmetry around the balance point. This implies that the gap to charge-excitations in the {\em individual} layers is substantially different for positive and negative imbalance.Comment: 4 pages. 4 figure

    Shape control of QDs studied by cross-sectional scanning tunneling microscopy

    Get PDF
    In this cross-sectional scanning tunneling microscopy study we investigated various techniques to control the shape of self-assembled quantum dots (QDs) and wetting layers (WLs). The result shows that application of an indium flush during the growth of strained InGaAs/GaAs QD layers results in flattened QDs and a reduced WL. The height of the QDs and WLs could be controlled by varying the thickness of the first capping layer. Concerning the technique of antimony capping we show that the surfactant properties of Sb result in the preservation of the shape of strained InAs/InP QDs during overgrowth. This could be achieved by both a growth interrupt under Sb flux and capping with a thin GaAsSb layer prior to overgrowth of the uncapped QDs. The technique of droplet epitaxy was investigated by a structural analysis of strain free GaAs/AlGaAs QDs. We show that the QDs have a Gaussian shape, that the WL is less than 1 bilayer thick, and that minor intermixing of Al with the QDs takes place.Comment: 7 pages, 10 figure

    Shape control of QDs studied by cross-sectional scanning tunneling microscopy

    Full text link
    In this cross-sectional scanning tunneling microscopy study we investigated various techniques to control the shape of self-assembled quantum dots (QDs) and wetting layers (WLs). The result shows that application of an indium flush during the growth of strained InGaAs/GaAs QD layers results in flattened QDs and a reduced WL. The height of the QDs and WLs could be controlled by varying the thickness of the first capping layer. Concerning the technique of antimony capping we show that the surfactant properties of Sb result in the preservation of the shape of strained InAs/InP QDs during overgrowth. This could be achieved by both a growth interrupt under Sb flux and capping with a thin GaAsSb layer prior to overgrowth of the uncapped QDs. The technique of droplet epitaxy was investigated by a structural analysis of strain free GaAs/AlGaAs QDs. We show that the QDs have a Gaussian shape, that the WL is less than 1 bilayer thick, and that minor intermixing of Al with the QDs takes place.Comment: 7 pages, 10 figure

    Settling the half-life of ⁶⁰Fe: fundamental for a versatile astrophysical chronometer

    No full text
    In order to resolve a recent discrepancy in the half-life of ⁶⁰Fe, we performed an independent measurement with a new method that determines the ⁶⁰Fe content of a material relative to Fe55 (t1/2=2.744yr) with accelerator mass spectrometry. Our result of (2.50±0.12)×10⁶yr clearly favors the recently reported value (2.62±0.04)×10⁶yr, and rules out the older result of (1.49±0.27)×10⁶yr. The present weighted mean half-life value of (2.60±0.05)×10⁶yr substantially improves the reliability as an important chronometer for astrophysical applications in the million-year time range. This includes its use as a sensitive probe for studying recent chemical evolution of our Galaxy, the formation of the early Solar System, nucleosynthesis processes in massive stars, and as an indicator of a recent nearby supernova.Part of this work was funded by the Austrian Science Fund (FWF) Projects No. AP20434 and AI00428 (FWF and CoDustMas, Eurogenesis via ESF)
    corecore