16 research outputs found

    Ophthalmology

    Get PDF
    OBJECTIVE: In the current study we aimed to identify metabolites associated with age-related macular degeneration (AMD) by performing the largest metabolome association analysis in AMD to date. In addition, we aimed to determine the effect of AMD-associated genetic variants on metabolite levels, and aimed to investigate associations between the identified metabolites and activity of the complement system, one of the main AMD-associated disease pathways. DESIGN: Case-control assocation analysis of metabolomics data. SUBJECTS: 2,267 AMD cases and 4,266 controls from five European cohorts. METHODS: Metabolomics was performed using a high-throughput H-NMR metabolomics platform, which allows the quantification of 146 metabolite measurements and 79 derivative values. Metabolome-AMD associations were studied using univariate logistic regression analyses. The effect of 52 AMD-associated genetic variants on the identified metabolites was investigated using linear regression. In addition, associations between the identified metabolites and activity of the complement pathway (defined by the C3d/C3 ratio) were investigated using linear regression. MAIN OUTCOME MEASURES: Metabolites associated with AMD RESULTS: We identified 60 metabolites that were significantly associated with AMD, including increased levels of large and extra-large HDL subclasses and decreased levels of VLDL, amino acids and citrate. Out of 52 AMD-associated genetic variants, seven variants were significantly associated with 34 of the identified metabolites. The strongest associations were identified for genetic variants located in or near genes involved in lipid metabolism (ABCA1, CETP, APOE, LIPC) with metabolites belonging to the large and extra-large HDL subclasses. In addition, 57 out of 60 metabolites were significantly associated with complement activation levels, and these associations were independent of AMD status. Increased large and extra-large HDL levels and decreased VLDL and amino acid levels were associated with increased complement activation. CONCLUSIONS: Lipoprotein levels were associated with AMD-associated genetic variants, while decreased essential amino acids may point to nutritional deficiencies in AMD. We observed strong associations between the vast majority of the AMD-associated metabolites and systemic complement activation levels, independent of AMD status. This may indicate biological interactions between the main AMD disease pathways, and suggests that multiple pathways may need to be targeted simultaneously for successful treatment of AMD

    Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future

    Get PDF
    Purpose Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future. Design Meta-analysis of prevalence data. Participants A total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe. Methods AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV). Main Outcome Measures Prevalence of early and late AMD, BCVA, and number of AMD cases. Results Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%–5.0%) in those aged 55–59 years to 17.6% (95%

    Early Detection of Incipient Retinal Pigment Epithelium Atrophy Overlying Drusen with Fundus Autofluorescence vs. Spectral Domain Optical Coherence Tomography

    Get PDF
    Purpose. This study aims to find out which tool, fundus autofluorescence (FAF) or spectral domain optical coherence tomography (SD-OCT), is more sensitive in detecting retinal pigment epithelium (RPE) demise overlying drusen and can, therefore, help predict geographic atrophy (GA) appearance in Age-Related Macular Degeneration (AMD). Methods. A single-site, retrospective, observational, longitudinal study was conducted. Patients with intermediate AMD (iAMD) (large (>125 μm) or intermediate (63–125 μm) drusen with hyper/hypopigmentation) with a minimum follow-up of 18 months were included. Drusen with overlying incipient RPE atrophy were identified on SD-OCT defined as choroidal hypertransmission or nascent geographic atrophy (nGA). These selected drusen were, then, traced backwards in time to determine if incipient RPE atrophy overlying drusen was observed on FAF (well-demarcated region of absence of autofluorescence) before, simultaneously, or after having detected the first signs of incipient RPE atrophy on SD-OCT. The number of drusen in which signs of incipient RPE atrophy was detected earlier using FAF or SD-OCT was compared. The time elapsed from the identification with the more sensitive method to the other was recorded and analyzed. Results. One hundred and thirty-three drusen in 22 eyes of 22 patients were included. Of these, 112 (84.2%) drusen showed choroidal hypertransmission and 21(15.8%) nGA. Early signs of atrophy overlying drusen were found simultaneously on SD-OCT and FAF in 52 cases (39.1%, 95% CI 30.8–47.9%), earliest on FAF in 51 (38.3%, 95% CI 30.0–47.2%) and first on SD-OCT in 30 (22.6%, 95% CI 15.8–30.6%; p<0.05). Statistically significant differences were found between both techniques (p=0.005), with FAF detecting it earlier than SD-OCT. When RPE atrophy was found first on FAF, the median time to diagnosis with SD-OCT was 6.6 months (95% CI 5.5 to 8.6), while if detection occurred earlier on SD-OCT, the median time until identification with FAF was 12.6 months (95% CI 6.0 to 23.4; p=0.0003). Conclusions. In iAMD cases in which early atrophy overlying drusen is not detected simultaneously in FAF and SD-OCT, FAF was significantly more sensitive. Nevertheless, a multimodal approach is recommended and required to evaluate these patients

    Analysis of Choroidal Vascularity Index in Keratoconus Patients Using Swept-Source Optical Coherence Tomography-Based Binarization Techniques

    Get PDF
    Purpose. To analyse the vascular density of the choroid in a keratoconus (KC) population using swept-source optical coherence tomography (SS-OCT). Methods. Prospective, noninterventional study that analysed 97 eyes from 52 KC patients and 145 eyes from 89 healthy controls. The sample was divided in four different age groups. Inclusion criteria were topographic diagnosis of KC using Pentacam, axial length shorter than 26 mm, good quality of the images, and no other systemic or ocular diseases. A 12 mm horizontal single-line SS-OCT b-scan was performed to create a choroidal thickness (CT) profile. Validated automated segmentation and binarization were used in order to analyse choroidal, stromal, and vascular areas. Results. The percentage of choroidal vascularity (vascular area/total area) was 56.6% in KC patients vs. 49.4% in controls. Aged-adjusted choroidal, stromal, and vascular areas and corrected choroidal percentage of vascularity are statistically increased in KC patients when compared with healthy controls (p<0.001). All these parameters show a decreasing trend with age. Both stromal and vascular areas were thicker in KC patients (p<0.001). Conclusions. Choroidal, stromal, and vascular areas and corrected choroidal percentage of vascularity are statistically increased in KC patients when compared with healthy controls. All these parameters tend to decrease with age

    Enlargement of Geographic Atrophy from First Diagnosis to End of Life

    No full text
    Importance: Treatments for geographic atrophy (GA), a late stage of age-related macular degeneration (AMD), are currently under development. Understanding the natural course is needed for optimal trial design. Although enlargement rates of GA and visual acuity (VA) in the short term are known from clinical studies, knowledge of enlargement in the long term, life expectancy, and visual course is lacking. Objective: To determine long-term enlargement of GA. Design, Setting, and Participants: In this study, participant data were collected from 4 population-based cohort studies, with up to 25 years of follow-up and eye examinations at 5-year intervals: the Rotterdam Study cohorts 1, 2, and 3 and the Blue Mountains Eye Study. Data were collected from 1990 to 2015, and data were analyzed from January 2019 to November 2020. Main Outcomes and Measures: Area of GA was measured pixel by pixel using all available imaging. Area enlargement and enlargement of the square root-transformed area, time until GA reached the central fovea, and time until death were assessed, and best-corrected VA, smoking status, macular lesions according to the Three Continent AMD Consortium classification, a modified version of the Wisconsin age-related maculopathy grading system, and AMD genetic variants were covariates in Spearman, Pearson, or Mann-Whitney analyses. Results: Of 171 included patients, 106 (62.0%) were female, and the mean (SD) age at inclusion was 82.6 (7.1) years. A total of 147 of 242 eyes with GA (60.7%) were newly diagnosed in our study. The mean area of GA at first presentation was 3.74 mm2(95% CI, 3.11-4.67). Enlargement rate varied widely between persons (0.02 to 4.05 mm2per year), with a mean of 1.09 mm2per year (95% CI, 0.89-1.30). Stage of AMD in the other eye was correlated with GA enlargement (Spearman ρ = 0.34; P =.01). Foveal involvement was already present in incident GA in 55 of 147 eyes (37.4%); 23 of 42 eyes (55%) developed this after a mean (range) period of 5.6 (3-12) years, and foveal involvement did not develop before death in 11 of 42 eyes (26%). After first diagnosis, 121 of 171 patients with GA (70.8%) died after a mean (SD) period of 6.4 (5.4) years. Visual function was visually impaired (less than 20/63) in 47 of 107 patients (43.9%) at last visit before death. Conclusions and Relevance: In this study, enlargement of GA appeared to be highly variable in the general population. More than one-third of incident GA was foveal at first presentation; those with extrafoveal GA developed foveal GA after a mean of 5.6 years. Future intervention trials should focus on recruiting those patients who have a high chance of severe visual decline within their life expectancy.

    Development of a Genotype Assay for Age-Related Macular Degeneration The EYE-RISK Consortium

    Get PDF
    Purpose: To develop a genotype assay to assess associations with common and rare age-related macular degeneration (AMD) risk variants, to calculate an overall genetic risk score (GRS), and to identify potential misdiagnoses with inherited macular dystrophies that mimic AMD. Design: Case-control study. Participants: Individuals (n = 4740) from 5 European cohorts. Methods: We designed single-molecule molecular inversion probes for target selection and used next generation sequencing to sequence 87 single nucleotide polymorphisms (SNPs), coding and splice-site regions of 10 AMD-(related) genes (ARMS2, C3, C9, CD46, CFB, CFH, CFI, HTRA1, TIMP3, and SLC16A8), and 3 genes that cause inherited macular dystrophies (ABCA4, CTNNA1, and PRPH2). Genetic risk scores for common AMD risk variants were calculated based on effect size and genotype of 52 AMD-associated variants. Frequency of rare variants was compared between late AMD patients and control individuals with logistic regression analysis. Main Outcome Measures: Genetic risk score, association of genetic variants with AMD, and genotype-phenotype correlations. Results: We observed high concordance rates between our platform and other genotyping platforms for the 69 successfully genotyped SNPs (>96%) and for the rare variants (>99%). We observed a higher GRS for patients with late AMD compared with patients with early/intermediate AMD (P < 0.001) and individuals without AMD (P < 0.001). A higher proportion of pathogenic variants in the CFH (odds ratio [OR] = 2.88; P = 0.006), CFI (OR = 4.45; P = 0.005), and C3 (OR = 6.56; P = 0.0003) genes was observed in late AMD patients compared with control individuals. In 9 patients, we identified pathogenic variants in the PRPH2, ABCA4, and CTNNA1 genes, which allowed reclassification of these patients as having inherited macular dystrophy. Conclusions: This study reports a genotype assay for common and rare AMD genetic variants, which can identify individuals at intermediate to high genetic risk of late AMD and enables differential diagnosis of AMD-mimicking dystrophies. Our study supports sequencing of CFH, CFI, and C3 genes because they harbor rare high-risk variants. Carriers of these variants could be amendable for new treatments for AMD that currently are under development. (C) 2020 by the American Academy of Ophthalmology

    Development of a Genotype Assay for Age-Related Macular Degeneration: The EYE-RISK Consortium

    No full text
    Purpose: To develop a genotype assay to assess associations with common and rare age-related macular degeneration (AMD) risk variants, to calculate an overall genetic risk score (GRS), and to identify potential misdiagnoses with inherited macular dystrophies that mimic AMD. Design: Case-control study. Participants: Individuals (n = 4740) from 5 European cohorts. Methods: We designed single-molecule molecular inversion probes for target selection and used next generation sequencing to sequence 87 single nucleotide polymorphisms (SNPs), coding and splice-site regions of 10 AMD-(related) genes (ARMS2, C3, C9, CD46, CFB, CFH, CFI, HTRA1, TIMP3, and SLC16A8), and 3 genes that cause inherited macular dystrophies (ABCA4, CTNNA1, and PRPH2). Genetic risk scores for common AMD risk variants were calculated based on effect size and genotype of 52 AMD-associated variants. Frequency of rare variants was compared between late AMD patients and control individuals with logistic regression analysis. Main Outcome Measures: Genetic risk score, association of genetic variants with AMD, and genotype–phenotype correlations. Results: We observed high concordance rates between our platform and other genotyping platforms for the 69 successfully genotyped SNPs (>96%) and for the rare variants (>99%). We observed a higher GRS for patients with late AMD compared with patients with early/intermediate AMD (P < 0.001) and individuals without AMD (P < 0.001). A higher proportion of pathogenic variants in the CFH (odds ratio [OR] = 2.88; P = 0.006), CFI (OR = 4.45; P = 0.005), and C3 (OR = 6.56; P = 0.0003) genes was observed in late AMD patients compared with control individuals. In 9 patients, we identified pathogenic variants in the PRPH2, ABCA4, and CTNNA1 genes, which allowed reclassification of these patients as having inherited macular dystrophy. Conclusions: This study reports a genotype assay for common and rare AMD genetic variants, which can identify individuals at intermediate to high genetic risk of late AMD and enables differential diagnosis of AMD-mimicking dystrophies. Our study supports sequencing of CFH, CFI, and C3 genes because they harbor rare high-risk variants. Carriers of these variants could be amendable for new treatments for AMD that currently are under development
    corecore