152 research outputs found
Functionalized carbon nanotubes as a filler for dielectric elastomer composites with improved actuation performance
Among the broad class of electro-active polymers, dielectric elastomer actuators represent a rapidly growing technology for electromechanical transduction. In order to further develop this applied science, the high driving voltages currently needed must be reduced. For this purpose, one of the most widely considered approaches is based on making elastomeric composites with highly polarizable fillers in order to increase the dielectric constant while maintaining both low dielectric losses and high-mechanical compliance. In this work, multi-wall carbon nanotubes were first functionalized by grafting either acrylonitrile or diurethane monoacrylate oligomers, and then dispersed into a polyurethane matrix to make dielectric elastomer composites. The procedures for the chemical functionalization of carbon nanotubes and proper characterizations of the obtained products are provided in detail. The consequences of the use of chemically modified carbon nanotubes as a filler, in comparison to using unmodified ones, were studied in terms of dielectric, mechanical and electromechanical response. In particular, an increment of the dielectric constant was observed for all composites throughout the investigated frequency spectrum, but only in the cases of modified carbon nanotubes did the loss factor remain almost unchanged with respect to the simple matrix, indicating that conductive percolation paths did not arise in such systems. An effective improvement in the actuation strain was observed for samples loaded with functionalized carbon nanotubes
Cardiac fluid dynamics anticipates heart adaptation
Hemodynamic forces represent an epigenetic factor during heart development and are supposed to influence the pathology of the grown heart. Cardiac blood motion is characterized by a vortical dynamics, and it is common belief that the cardiac vortex has a role in disease progressions or regression. Here we provide a preliminary demonstration about the relevance of maladaptive intra-cardiac vortex dynamics in the geometrical adaptation of the dysfunctional heart. We employed an in vivo model of patients who present a stable normal heart function in virtue of the cardiac resynchronization therapy (CRT, bi-ventricular pace-maker) and who are expected to develop left ventricle remodeling if pace-maker was switched off. Intra-ventricular fluid dynamics is analyzed by echocardiography (Echo-PIV). Under normal conditions, the flow presents a longitudinal alignment of the intraventricular hemodynamic forces. When pacing is temporarily switched off, flow forces develop a misalignment hammering onto lateral walls, despite no other electro-mechanical change is noticed. Hemodynamic forces result to be the first event that evokes a physiological activity anticipating cardiac changes and could help in the prediction of longer term heart adaptations
Left ventricular pacing vector selection by novel echo-particle imaging velocimetry analysis for optimization of quadripolar cardiac resynchronization device: A case report
Background: The availability of pacing configurations offered by quadripolar left ventricular leads could improve patients\u2019 response to cardiac resynchronization therapy; however, the selection of an optimal setting remains a
challenge. Echo-particle imaging velocimetry has shown that regional anomalies of synchrony/synergy of the left ventricle are related to the alteration, reduction, or suppression of the physiological intracavitary pressure gradients.
These observations are also supported by several numerical models of the left ventricle that have shown the close relationship between wall motion abnormalities, change of intraventricular flow dynamics, and abnormal
distribution of forces operating on the ventricular endocardium.
Case presentation: A 73-year-old white man in New York Heart Association III functional class with an ejection fraction of 27.5 % did not improve after 1 month of cardiac resynchronization therapy. Five configurations were
tested and settings were defined by optimizing intraventricular flow. After 6 months, he became New York Heart Association II class with left ventricular ejection fraction of 53.2 %.
Conclusions: The abnormal dynamic of pressure gradients during the cardiac cycle, through biohumoral endocrine, autocrine, and paracrine transduction, may lead to structural changes of the myocardial walls with subsequent left ventricular remodeling. The echo-particle imaging velocimetry technique may be useful for elucidating the favorable effects of cardiac resynchronization therapy on intraventricular fluid dynamics and it could be used to identify appropriate pacing setting during acute echocardiographic optimization of left pacing vector
Changes in electrical activation modify the orientation of left ventricular flow momentum: novel observations using echocardiographic particle image velocimetry
Changes in electrical activation sequence are known to affect the timing of cardiac mechanical events. We aim to demonstrate that these also modify global properties of the intraventricular blood flow pattern. We also explore whether such global changes present a relationship with clinical outcome
Evolution of calcite surfaces upon thermal decomposition, characterized by electrokinetics, in-situ XRD, and SEM
The present study analyses transformation pathways of pristine and thermally treated porous limestone and dense marble surfaces by means of time-resolved streaming current and potential measurements coupled with scanning electron microscopy and in-situ X-ray diffraction. The results reveal that under nonequilibrium conditions the zeta potential (ζ) of natural
carbonates may exhibit positive and negative signs and ζ drifts in opposite directions. Sample surface roughness influences ζ because it contributes to dissolution, as observed particularly in the initial period of time-resolved measurements. Thermal treatment causes a temporary charge reversal from negative to positive. The reactivity of calcium hydroxide on calcite surfaces governs the net electrokinetic potential and isoelectric point (IEPpH), even at low surface coverage,
as cross-validated by in-situ XRD. It was also found that pore conductivity may lead to ~90% underestimation of ζ when assessed by streaming potential. SEM studies revealed micro cracks inducement on marble after thermal treatment, which can result in underestimation of ζ up to the same extent as for the porous limestone. When an asymmetric cell configuration involving calcite and polypropylene surfaces is used, the fractional contribution of polypropylene to the IEPpH
is 0.3 and to the overall determined ζ up to 0.5. Our findings contribute to the understanding of nonequilibrium and time-dependent electrokinetic potential modifications associated with the reactivity of porous surfaces. This study highlights the effectiveness of the streaming potential technique for monitoring such changes further supported by the use of ancillary techniques to analyze the extend of chemo-mineralogical and physical alterations
Preparation of water suspensions of nanocalcite for cultural heritage applications
The consolidation of degraded carbonate stone used in ancient monuments is an important topic for European cultural heritage conservation. The products most frequently used as consolidants are based on tetraalkoxy- or alkylalkoxy-silanes (in particular tetraethyl-orthosilicate, TEOS), resulting in the formation of relatively stable amorphous silica or alkylated (hydrophobic) silica inside the stone pores. However, silica is not chemically compatible with carbonate stones; in this respect, nanocalcite may be a suitable alternative. The present work concerns the preparation of water suspensions of calcite nanoparticles (CCNPs) by controlled carbonation of slaked lime using a pilot-scale reactor. A simplified design of experiment was adopted for product optimization. Calcite nanoparticles of narrow size distribution averaging about 30 nm were successfully obtained, the concentration of the interfacial agent and the size of CaO being the most critical parameters. Primary nanoparticle aggregation causing flocculation could be substantially prevented by the addition of polymeric dispersants. Copolymer-based dispersants were produced in situ by controlled heterophase polymerisation mediated by an amphiphilic macro-RAFT (reversible addition-fragmentation transfer) agent. The stabilized CCNP aqueous dispersions were then applied on carbonate and silicate substrates; Scanning Electron Microscopy (SEM)analysis of cross-sections allowed the evaluation of pore penetration, interfacial binding, and bridging (gap-filling) properties of these novel consolidants
Non-invasive sensors for wound monitoring and therapy
Chronic wounds such as diabetic foot ulcers and venous leg ulcers affect in Europe more than 10 million people, a number that is expected to grow due to the aging of the population. Sensors can be a valid tool to improve the quality of healthcare for wound monitoring and management. The integration of sensor data within health information and decision support systems may allow the delivery of personalized treatments at decreased cost. The EU FP7 SWAN-iCare project is developing a negative-pressure device associated with non-invasive sensors capable to monitor some physiological parameters related to the wound status, such as pH, temperature and transepidermal water loss. These sensors will help to provide personalized therapies to patients and check the effectiveness of treatments remotely
- …