1,807 research outputs found
High-Rate Vector Quantization for the Neyman-Pearson Detection of Correlated Processes
This paper investigates the effect of quantization on the performance of the
Neyman-Pearson test. It is assumed that a sensing unit observes samples of a
correlated stationary ergodic multivariate process. Each sample is passed
through an N-point quantizer and transmitted to a decision device which
performs a binary hypothesis test. For any false alarm level, it is shown that
the miss probability of the Neyman-Pearson test converges to zero exponentially
as the number of samples tends to infinity, assuming that the observed process
satisfies certain mixing conditions. The main contribution of this paper is to
provide a compact closed-form expression of the error exponent in the high-rate
regime i.e., when the number N of quantization levels tends to infinity,
generalizing previous results of Gupta and Hero to the case of non-independent
observations. If d represents the dimension of one sample, it is proved that
the error exponent converges at rate N^{2/d} to the one obtained in the absence
of quantization. As an application, relevant high-rate quantization strategies
which lead to a large error exponent are determined. Numerical results indicate
that the proposed quantization rule can yield better performance than existing
ones in terms of detection error.Comment: 47 pages, 7 figures, 1 table. To appear in the IEEE Transactions on
Information Theor
Revisiting light stringy states in view of the 750 GeV diphoton excess
We investigate light massive string states that appear at brane
intersections. They replicate the massless spectrum in a richer fashion and may
be parametrically lighter than standard Regge excitations. We identify the
first few physical states and determine their BRST invariant vertex operators.
In the supersymmetric case we reconstruct the super-multiplet structure. We
then compute some simple interactions, such as the decay rate of a massive
scalar or vector into two massless fermions. Finally we suggest an alternative
interpretation of the 750 GeV diphoton excess at LHC in terms of a light
massive string state, a replica of the Standard Model Higgs.Comment: 29 pages, 5 eps figures. v
Distributed on-line multidimensional scaling for self-localization in wireless sensor networks
The present work considers the localization problem in wireless sensor
networks formed by fixed nodes. Each node seeks to estimate its own position
based on noisy measurements of the relative distance to other nodes. In a
centralized batch mode, positions can be retrieved (up to a rigid
transformation) by applying Principal Component Analysis (PCA) on a so-called
similarity matrix built from the relative distances. In this paper, we propose
a distributed on-line algorithm allowing each node to estimate its own position
based on limited exchange of information in the network. Our framework
encompasses the case of sporadic measurements and random link failures. We
prove the consistency of our algorithm in the case of fixed sensors. Finally,
we provide numerical and experimental results from both simulated and real
data. Simulations issued to real data are conducted on a wireless sensor
network testbed.Comment: 32 pages, 5 figures, 1 tabl
A Coordinate Descent Primal-Dual Algorithm and Application to Distributed Asynchronous Optimization
Based on the idea of randomized coordinate descent of -averaged
operators, a randomized primal-dual optimization algorithm is introduced, where
a random subset of coordinates is updated at each iteration. The algorithm
builds upon a variant of a recent (deterministic) algorithm proposed by V\~u
and Condat that includes the well known ADMM as a particular case. The obtained
algorithm is used to solve asynchronously a distributed optimization problem. A
network of agents, each having a separate cost function containing a
differentiable term, seek to find a consensus on the minimum of the aggregate
objective. The method yields an algorithm where at each iteration, a random
subset of agents wake up, update their local estimates, exchange some data with
their neighbors, and go idle. Numerical results demonstrate the attractive
performance of the method. The general approach can be naturally adapted to
other situations where coordinate descent convex optimization algorithms are
used with a random choice of the coordinates.Comment: 10 page
- …