19,181 research outputs found

    The Statistical Physics of Athermal Materials

    Full text link
    At the core of equilibrium statistical mechanics lies the notion of statistical ensembles: a collection of microstates, each occurring with a given a priori probability that depends only on a few macroscopic parameters such as temperature, pressure, volume, and energy. In this review article, we discuss recent advances in establishing statistical ensembles for athermal materials. The broad class of granular and particulate materials is immune from the effects of thermal fluctuations because the constituents are macroscopic. In addition, interactions between grains are frictional and dissipative, which invalidates the fundamental postulates of equilibrium statistical mechanics. However, granular materials exhibit distributions of microscopic quantities that are reproducible and often depend on only a few macroscopic parameters. We explore the history of statistical ensemble ideas in the context of granular materials, clarify the nature of such ensembles and their foundational principles, highlight advances in testing key ideas, and discuss applications of ensembles to analyze the collective behavior of granular materials

    Difference of optical conductivity between one- and two-dimensional doped nickelates

    Full text link
    We study the optical conductivity in doped nickelates, and find the dramatic difference of the spectrum in the gap (ω\omega\alt4 eV) between one- (1D) and two-dimensional (2D) nickelates. The difference is shown to be caused by the dependence of hopping integral on dimensionality. The theoretical results explain consistently the experimental data in 1D and 2D nickelates, Y2−x_{2-x}Cax_xBaNiO5_5 and La2−x_{2-x}Srx_xNiO4_4, respectively. The relation between the spectrum in the X-ray aborption experiments and the optical conductivity in La2−x_{2-x}Srx_xNiO4_4 is discussed.Comment: RevTeX, 4 pages, 4 figure

    d-wave Holographic Superconductor Vortex Lattice and Non-Abelian Holographic Superconductor Droplet

    Full text link
    A d-wave holographic superconductor is studied under a constant magnetic field by perturbation method, we obtain both droplet and triangular vortex lattice solution. The results are the same as the s-wave holographic superconductor. The non-Abelian holographic superconductor with p+ipp+ip-wave background is also studied under magnetic field, unlike the d-wave and s-wave models, we find that the non-Abelian model has only droplet solution.Comment: Version2, 12 pages,2 figures. Accepted by PR

    Supercurrent in p-wave Holographic Superconductor

    Full text link
    The p-wave and p+ipp+ip-wave holographic superconductors with fixed DC supercurrent are studied by introducing a non-vanishing vector potential. We find that close to the critical temperature TcT_c of zero current, the numerical results of both the p wave model and the p+ipp+ip model are the same as those of Ginzburg-Landau (G-L) theory, for example, the critical current jc∼(Tc−T)3/2j_c \sim (T_c-T)^{3/2} and the phase transition in the presence of a DC current is a first order transition. Besides the similar results between both models, the p+ipp+ip superconductor shows isotropic behavior for the supercurrent, while the p-wave superconductor shows anisotropic behavior for the supercurrent.Comment: Version 4. 18 pages, 9figures. New results of the anisotropic behavior for the supercurrent in p-wave model added. Accepted by PR

    Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins

    Full text link
    During division it is of primary importance for a cell to correctly determine the site of cleavage. The bacterium Escherichia coli divides in the center, producing two daughter cells of equal size. Selection of the center as the correct division site is in part achieved by the Min-proteins. They oscillate between the two cell poles and thereby prevent division at these locations. Here, a phenomenological description for these oscillations is presented, where lateral interactions between proteins on the cell membrane play a key role. Solutions to the dynamic equations are compared to experimental findings. In particular, the temporal period of the oscillations is measured as a function of the cell length and found to be compatible with the theoretical prediction.Comment: 17 pages, 5 figures. Submitted to Physical Biolog

    New quasars behind the Magellanic Clouds. Spectroscopic confirmation of near-infrared selected candidates

    Get PDF
    Context. Quasi-stellar objects (quasars) located behind nearby galaxies provide an excellent absolute reference system for astrometric studies, but they are difficult to identify because of fore- and background contamination. Deep wide-field, high angular resolution surveys spanning the entire area of nearby galaxies are needed to obtain a complete census of such quasars. Aims. We embarked on a program to expand the quasar reference system behind the Large and the Small Magellanic Clouds, the Magellanic Bridge, and the Magellanic Stream that connects the Clouds with the Milky Way. Methods. Hundreds of quasar candidates were selected based on their near-infrared colors and variability properties from the ongoing public ESO VISTA Magellanic Clouds survey. A subset of 49 objects was followed up with optical spectroscopy. Results. We confirmed the quasar nature of 37 objects (34 new identifications): four are low redshift objects, three are probably stars, and the remaining three lack prominent spectral features for a secure classification. The bona fide quasars, identified from their broad emisison lines, are located as follows: 10 behind the LMC, 13 behind the SMC, and 14 behind the Bridge. The quasars span a redshift range from z ~ 0.5 to z ~ 4.1. Conclusions. Upon completion the VMC survey is expected to yield a total of ~1500 quasars with Y< 19.32 mag, J< 19.09 mag, and Ks< 18.04 mag

    CP Asymmetry in Charged Higgs Decays in MSSM

    Get PDF
    We discuss and compare the charge-parity (CP) asymmetry in the charged Higgs boson decays H -> \bar{u}_i d_j for the second and third generation quarks in the minimal supersymmetric standard model. As part of the analysis, we derive some general analytical formulas for the imaginary parts of two-point and three-point scalar one-loop integrals and use them for calculating vectorial and tensorial type integrals needed for the problem under consideration. We find that, even though each decay mode has a potential to yield a CP asymmetry larger than 10%, further analysis based on the number of required charged Higgs events at colliders favors the \bar{t}b, \bar{c}b, and \bar{c}s channels, whose asymmetry could reach 10-15% in certain parts of the parameter space.Comment: 25 pages, 9 figures. Discussion about charged Higgs observability added, typos corrected, accepted for publication in PR
    • …
    corecore