19,181 research outputs found
The Statistical Physics of Athermal Materials
At the core of equilibrium statistical mechanics lies the notion of
statistical ensembles: a collection of microstates, each occurring with a given
a priori probability that depends only on a few macroscopic parameters such as
temperature, pressure, volume, and energy. In this review article, we discuss
recent advances in establishing statistical ensembles for athermal materials.
The broad class of granular and particulate materials is immune from the
effects of thermal fluctuations because the constituents are macroscopic. In
addition, interactions between grains are frictional and dissipative, which
invalidates the fundamental postulates of equilibrium statistical mechanics.
However, granular materials exhibit distributions of microscopic quantities
that are reproducible and often depend on only a few macroscopic parameters. We
explore the history of statistical ensemble ideas in the context of granular
materials, clarify the nature of such ensembles and their foundational
principles, highlight advances in testing key ideas, and discuss applications
of ensembles to analyze the collective behavior of granular materials
Difference of optical conductivity between one- and two-dimensional doped nickelates
We study the optical conductivity in doped nickelates, and find the dramatic
difference of the spectrum in the gap (\alt4 eV) between one- (1D)
and two-dimensional (2D) nickelates. The difference is shown to be caused by
the dependence of hopping integral on dimensionality. The theoretical results
explain consistently the experimental data in 1D and
2D nickelates, YCaBaNiO and LaSrNiO,
respectively. The relation between the spectrum in the X-ray aborption
experiments and the optical conductivity in LaSrNiO is
discussed.Comment: RevTeX, 4 pages, 4 figure
d-wave Holographic Superconductor Vortex Lattice and Non-Abelian Holographic Superconductor Droplet
A d-wave holographic superconductor is studied under a constant magnetic
field by perturbation method, we obtain both droplet and triangular vortex
lattice solution. The results are the same as the s-wave holographic
superconductor. The non-Abelian holographic superconductor with -wave
background is also studied under magnetic field, unlike the d-wave and s-wave
models, we find that the non-Abelian model has only droplet solution.Comment: Version2, 12 pages,2 figures. Accepted by PR
Supercurrent in p-wave Holographic Superconductor
The p-wave and -wave holographic superconductors with fixed DC
supercurrent are studied by introducing a non-vanishing vector potential. We
find that close to the critical temperature of zero current, the
numerical results of both the p wave model and the model are the same as
those of Ginzburg-Landau (G-L) theory, for example, the critical current and the phase transition in the presence of a DC current is
a first order transition. Besides the similar results between both models, the
superconductor shows isotropic behavior for the supercurrent, while the
p-wave superconductor shows anisotropic behavior for the supercurrent.Comment: Version 4. 18 pages, 9figures. New results of the anisotropic
behavior for the supercurrent in p-wave model added. Accepted by PR
Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins
During division it is of primary importance for a cell to correctly determine
the site of cleavage. The bacterium Escherichia coli divides in the center,
producing two daughter cells of equal size. Selection of the center as the
correct division site is in part achieved by the Min-proteins. They oscillate
between the two cell poles and thereby prevent division at these locations.
Here, a phenomenological description for these oscillations is presented, where
lateral interactions between proteins on the cell membrane play a key role.
Solutions to the dynamic equations are compared to experimental findings. In
particular, the temporal period of the oscillations is measured as a function
of the cell length and found to be compatible with the theoretical prediction.Comment: 17 pages, 5 figures. Submitted to Physical Biolog
Recommended from our members
Assessing plantar sensation in the foot using the FOot Roughness Discrimination Test (FoRDTâ„¢): a reliability and validity study in stroke
BACKGROUND: The foot sole represents a sensory dynamometric map and is essential for balance and gait control. Sensory impairments are common, yet often difficult to quantify in neurological conditions, particularly stroke. A functionally oriented and quantifiable assessment, the Foot Roughness Discrimination Test (FoRDTâ„¢), was developed to address these shortcomings. OBJECTIVE: To evaluate inter- and intra-rater reliability, convergent and discriminant validity of the Foot Roughness Discrimination Test (FoRDTâ„¢). DESIGN: Test-retest design. SETTING: Hospital Outpatient. PARTICIPANTS: Thirty-two people with stroke (mean age 70) at least 3 months after stroke, and 32 healthy, age-matched controls (mean age 70). MAIN OUTCOME MEASURES: Roughness discrimination thresholds were quantified utilising acrylic foot plates, laser-cut to produce graded spatial gratings. Stroke participants were tested on three occasions, and by two different raters. Inter- and intra-rater reliability and agreement were evaluated with Intraclass Correlation Coefficients and Bland-Altman plots. Convergent validity was evaluated through Spearman rank correlation coefficients (rho) between the FoRDTâ„¢ and the Erasmus modified Nottingham Sensory Assessment (EmNSA). RESULTS: Intra- and inter rater reliability and agreement were excellent (ICC =.86 (95% CI .72-.92) and .90 (95% CI .76 -.96)). Discriminant validity was demonstrated through significant differences in FoRDTâ„¢ between stroke and control participants (p.05). CONCLUSIONS: This simple and functionally oriented test of plantar sensation is reliable, valid and clinically feasible for use in an ambulatory, chronic stroke and elderly population. It offers clinicians and researchers a sensitive and robust sensory measure and may further support the evaluation of rehabilitation targeting foot sensation. This article is protected by copyright. All rights reserved
New quasars behind the Magellanic Clouds. Spectroscopic confirmation of near-infrared selected candidates
Context. Quasi-stellar objects (quasars) located behind nearby galaxies provide an excellent absolute reference system for astrometric studies, but they are difficult to identify because of fore- and background contamination. Deep wide-field, high angular resolution surveys spanning the entire area of nearby galaxies are needed to obtain a complete census of such quasars. Aims. We embarked on a program to expand the quasar reference system behind the Large and the Small Magellanic Clouds, the Magellanic Bridge, and the Magellanic Stream that connects the Clouds with the Milky Way. Methods. Hundreds of quasar candidates were selected based on their near-infrared colors and variability properties from the ongoing public ESO VISTA Magellanic Clouds survey. A subset of 49 objects was followed up with optical spectroscopy. Results. We confirmed the quasar nature of 37 objects (34 new identifications): four are low redshift objects, three are probably stars, and the remaining three lack prominent spectral features for a secure classification. The bona fide quasars, identified from their broad emisison lines, are located as follows: 10 behind the LMC, 13 behind the SMC, and 14 behind the Bridge. The quasars span a redshift range from z ~ 0.5 to z ~ 4.1. Conclusions. Upon completion the VMC survey is expected to yield a total of ~1500 quasars with Y< 19.32 mag, J< 19.09 mag, and Ks< 18.04 mag
CP Asymmetry in Charged Higgs Decays in MSSM
We discuss and compare the charge-parity (CP) asymmetry in the charged Higgs
boson decays H -> \bar{u}_i d_j for the second and third generation quarks in
the minimal supersymmetric standard model. As part of the analysis, we derive
some general analytical formulas for the imaginary parts of two-point and
three-point scalar one-loop integrals and use them for calculating vectorial
and tensorial type integrals needed for the problem under consideration. We
find that, even though each decay mode has a potential to yield a CP asymmetry
larger than 10%, further analysis based on the number of required charged Higgs
events at colliders favors the \bar{t}b, \bar{c}b, and \bar{c}s channels, whose
asymmetry could reach 10-15% in certain parts of the parameter space.Comment: 25 pages, 9 figures. Discussion about charged Higgs observability
added, typos corrected, accepted for publication in PR
- …