61 research outputs found

    Development of a Combined Lipid-Based Nanoparticle Formulation for Enhanced siRNA Delivery to Vascular Endothelial Cells

    Get PDF
    Low transfection efficiency in endothelial cells (EC) is still a bottleneck for the majority of siRNA-based vascular delivery approaches. In this work, we developed a lipid-based nanoparticle (LNP) formulation based on a combination of a permanently charged cationic lipid-DOTAP and a conditionally ionized cationic lipid-MC3 (DOTAP/MC3) for the enhanced delivery of siRNA into EC. Compared with a single DOTAP or MC3-based benchmark LNP, we demonstrated that the DOTAP/MC3 LNP formulation shows the best transfection efficiency both in primary EC in vitro and in endothelium in zebrafish. The high transfection activity of the DOTAP/MC3 LNP formulation is achieved by a combination of improved endothelial association mediated by DOTAP and MC3-triggered efficient siRNA intracellular release in EC. Furthermore, AbVCAM-1-coupled DOTAP/MC3 LNP-mediated siRNARelA transfection showed pronounced anti-inflammatory effects in inflammatory-activated primary EC by effectively blocking the NF-κB pathway. In conclusion, the combination of permanent and ionizable cationic lipids in LNP formulation provides an effective endothelial cell delivery of siRNA

    Electrocatalytic synthesis of C–N coupling compounds from CO2 and nitrogenous species

    Get PDF
    The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 42277485, 21976141, 22272197, 22102184, 22102136, andU22A20392), the Natural Science Foundation of Hubei Province (2022CFB1001 and 2021CFA034), the Department of Education of Hubei Province (Q20221701 and Q20221704), and the Joint Fund of Yulin University and Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2022008).The electrocatalytic synthesis of C–N coupling compounds from CO2 and nitrogenous species not only offers an effective avenue to achieve carbon neutrality and reduce environmental pollution, but also establishes a route to synthesize valuable chemicals, such as urea, amide, and amine. This innovative approach expands the application range and product categories beyond simple carbonaceous species in electrocatalytic CO2 reduction, which is becoming a rapidly advancing field. This review summarizes the research progress in electrocatalytic urea synthesis, using N2, NO2−, and NO3− as nitrogenous species, and explores emerging trends in the electrosynthesis of amide and amine from CO2 and nitrogen species. Additionally, the future opportunities in this field are highlighted, including electrosynthesis of amino acids and other compounds containing C–N bonds, anodic C–N coupling reactions beyond water oxidation, and the catalytic mechanism of corresponding reactions. This critical review also captures the insights aimed at accelerating the development of electrochemical C–N coupling reactions, confirming the superiority of this electrochemical method over the traditional techniques.publishersversionpublishe

    Seeing Elastin: A Near-Infrared Zwitterionic Fluorescent Probe for In Vivo Elastin Imaging

    Get PDF
    Elastic fibers are present in a variety of tissues and are responsible for their resilience. Until now, no optical contrast agent in the near-infrared (NIR) wavelength range of 700-900 nm has been reported for the imaging of elastic fibers. Here, we report the discovery of a NIR zwitterionic elastin probe ElaNIR (elastin NIR) through fluorescent-image-based screening. The probe was successfully applied for in vitro, ex vivo, and in vivo imaging by various imaging modalities. Age-related elastin differences shown by in vivo fluorescent and photoacoustic imaging indicated that ElaNIR can be a potentially convenient tool for uncovering changes of elastin in live models.11Ysciescopu

    Construction of a novel anaerobic pathway in Escherichia coli for propionate production

    No full text
    Abstract Background Propionate is widely used as an important preservative and important chemical intermediate for synthesis of cellulose fibers, herbicides, perfumes and pharmaceuticals. Biosynthetic propionate has mainly been produced by Propionibacterium, which has various limitations for industrial application. Results In this study, we engineered E. coli by combining reduced TCA cycle with the native sleeping beauty mutase (Sbm) cycle to construct a redox balanced and energy viable fermentation pathway for anaerobic propionate production. As the cryptic Sbm operon was over-expressed in E. coli MG1655, propionate titer reached 0.24 g/L. To increase precursor supply for the Sbm cycle, genetic modification was made to convert mixed fermentation products to succinate, which slightly increased propionate production. For optimal expression of Sbm operon, different types of promoters were examined. A strong constitutive promoter Pbba led to the highest titer of 2.34 g/L. Methylmalonyl CoA mutase from Methylobacterium extorquens AM1 was added to strain T110(pbba-Sbm) to enhance this rate limiting step. With optimized expression of this additional Methylmalonyl CoA mutase, the highest production strain was obtained with a titer of 4.95 g/L and a yield of 0.49 mol/mol glucose. Conclusions With various metabolic engineering strategies, the propionate titer from fermentation achieved 4.95 g/L. This is the reported highest anaerobic production of propionate by heterologous host. Due to host advantages, such as non-strict anaerobic condition, mature engineering and fermentation techniques, and low cost minimal media, our work has built the basis for industrial propionate production with E. coli chassis

    Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique

    No full text
    Abstract Background Ralstonia eutropha is an important bacterium for the study of polyhydroxyalkanoates (PHAs) synthesis and CO2 fixation, which makes it a potential strain for industrial PHA production and attractive host for CO2 conversion. Although the bacterium is not recalcitrant to genetic manipulation, current methods for genome editing based on group II introns or single crossover integration of a suicide plasmid are inefficient and time-consuming, which limits the genetic engineering of this organism. Thus, developing an efficient and convenient method for R. eutropha genome editing is imperative. Results An efficient genome editing method for R. eutropha was developed using an electroporation-based CRISPR-Cas9 technique. In our study, the electroporation efficiency of R. eutropha was found to be limited by its restriction-modification (RM) systems. By searching the putative RM systems in R. eutropha H16 using REBASE database and comparing with that in E. coli MG1655, five putative restriction endonuclease genes which are related to the RM systems in R. eutropha were predicated and disrupted. It was found that deletion of H16_A0006 and H16_A0008-9 increased the electroporation efficiency 1658 and 4 times, respectively. Fructose was found to reduce the leaky expression of the arabinose-inducible pBAD promoter, which was used to optimize the expression of cas9, enabling genome editing via homologous recombination based on CRISPR-Cas9 in R. eutropha. A total of five genes were edited with efficiencies ranging from 78.3 to 100%. The CRISPR-Cpf1 system and the non-homologous end joining mechanism were also investigated, but failed to yield edited strains. Conclusions We present the first genome editing method for R. eutropha using an electroporation-based CRISPR-Cas9 approach, which significantly increased the efficiency and decreased time to manipulate this facultative chemolithoautotrophic microbe. The novel technique will facilitate more advanced researches and applications of R. eutropha for PHA production and CO2 conversion

    Liang shu

    No full text
    International audienc
    corecore