16 research outputs found

    Influence of internal climate variability on Indian Ocean Dipole properties

    Get PDF
    The Indian Ocean Dipole (IOD) is the dominant mode of interannual variability over the tropical Indian Ocean (IO) and its future changes are projected to impact the climate and weather of Australia, East Africa, and Indonesia. Understanding the response of the IOD to a warmer climate has been largely limited to studies of individual coupled general circulation models or multi-model ensembles. This has provided valuable insight into the IOD’s projected response to increasing greenhouse gases but has limitations in accounting for the role of internal climate variability. Using the Community Earth System Model Large Ensemble (CESM-LE), the IOD is examined in thirty-five present-day and future simulations to determine how internal variability influences properties of the IOD and their response to a warmer climate. Despite small perturbations in the initial conditions as the only difference between ensemble members, significant relationships between the mean state of the IO and the IOD arise, leading to a spread in the projected IOD responses to increasing greenhouse gases. This is driven by the positive Bjerknes feedback, where small differences in mean thermocline depth, which are caused by internal climate variability, generate significant variations in IOD amplitude, skewness, and the climatological zonal sea surface temperature gradient

    North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states

    Get PDF
    Simulation characteristics from eighteen global ocean–sea-ice coupled models are presented with a focus on the mean Atlantic meridional overturning circulation (AMOC) and other related fields in the North Atlantic. These experiments use inter-annually varying atmospheric forcing data sets for the 60-year period from 1948 to 2007 and are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The protocol for conducting such CORE-II experiments is summarized. Despite using the same atmospheric forcing, the solutions show significant differences. As most models also differ from available observations, biases in the Labrador Sea region in upper-ocean potential temperature and salinity distributions, mixed layer depths, and sea-ice cover are identified as contributors to differences in AMOC. These differences in the solutions do not suggest an obvious grouping of the models based on their ocean model lineage, their vertical coordinate representations, or surface salinity restoring strengths. Thus, the solution differences among the models are attributed primarily to use of different subgrid scale parameterizations and parameter choices as well as to differences in vertical and horizontal grid resolutions in the ocean models. Use of a wide variety of sea-ice models with diverse snow and sea-ice albedo treatments also contributes to these differences. Based on the diagnostics considered, the majority of the models appear suitable for use in studies involving the North Atlantic, but some models require dedicated development effort

    Impacts of Low-Frequency Internal Climate Variability and Greenhouse Warming on El Nino–Southern Oscillation

    No full text
    El Nino–Southern Oscillation (ENSO) is the dominant mode of interannual climate fluctuations with wide- ranging socioeconomic and environmental impacts. Understanding the eastern Pacific (EP) and central Pacific (CP) El Nino response to a warmer climate is paramount, yet the role of internal climate variability in modulating their response is not clear. Using large ensembles, we find that internal variability generates a spread in the standard deviation and skewness of these two El Nino types that is similar to the spread of 17 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that realistically simulate ENSO diversity. Based on 40 Community Earth System Model Large Ensemble (CESM-LE) and 99 Max Planck Institute for Meteorology Grand Ensemble (MPI-GE) members, unforced variability can explain more than 90% of the historical EP and CP El Nino standard deviation and all of the ENSO skewness spread in the 17 CMIP5 models. Both CESM-LE and the selected CMIP5 models show increased EP and CP El Nino variability in a warmer climate, driven by a stronger mean vertical temperature gradient in the upper ocean and faster surface warming of the eastern equatorial Pacific. However, MPI-GE shows no agreement in EP or CP standard deviation change. This is due to weaker sensitivity to the warming signal, such that when the eastern equatorial Pacific surface warming is faster, the change in upper ocean vertical temperature gradient tends to be weaker. This highlights that individual models produce a different ENSO response in a warmer climate, and that considerable uncertainty within the CMIP5 ensemble may be caused by internal climate variability

    The Tropical Atlantic's Asymmetric Impact on the El Niño‐Southern Oscillation

    Get PDF
    Abstract Using observations and Atlantic forced coupled model simulations, we show evidence for an asymmetry in the link between beginning of year tropical Atlantic sea surface temperature anomalies (SSTAs) and end of the year El Niño‐Southern Oscillation events. We find a greater tendency for warm Atlantic SSTAs to lead to a La Niña than for cold anomalies to lead to El Niño. The model experiments showed that the Atlantic had a greater chance to force the tropical Pacific if the Pacific was initially in a neutral state. In the model, a warm Atlantic from March–May was able to produce an atmospheric response leading to easterly wind anomalies in the western Pacific. This in turn induces a subsurface oceanic response, leading to La Niña at the end of the year. The atmospheric response does not occur for a cold Atlantic, leading to no impacts in the Pacific

    Multi-decadal variations of the South Indian Ocean subsurface temperature influenced by Pacific Decadal Oscillation

    No full text
    Over recent decades, a strong subsurface cooling trend in the South Indian Ocean (SIO) occurred, despite a continuous sea surface warming. Previous studies suggest this long-term (around 1960–2000) cooling trend is mainly driven by remote Pacific atmospheric forcing or local Indian Ocean (IO) forcing. This study reveals that the dominant driver of the SIO subsurface cooling trend in different periods is closely related to the phase of Pacific Decadal Oscillation (PDO). Our results suggest that the local IO wind forcing is responsible for the majority of the subsurface cooling trend and overwhelms a weak warming trend induced by the remote tropical Pacific wind forcing during the negative-phase period of PDO during 1960–76. However, this situation reverses during the PDO positive-phase period during 1977–98. Our analysis suggests that the PDO strengthens/weakens the tropical Pacific trade winds during negative/positive phase periods. Furthermore, the multi-decadal variations in the western Pacific induced by PDO impact the SIO subsurface temperature via baroclinic Rossby waves

    Impact of different solar penetration depths on climate simulations

    No full text
    Three different estimates of shortwave attenuation depth (SWAD) of photosynthetically active radiation (PAR) derived from remotely sensed ocean colour data have been tested in an ocean general circulation model (OGCM) forced with interannual atmospheric forcings. Two estimates (referred to as [Kd(PAR)]1-1 and [Kd(PAR)]2-1) are calculated from different algorithms based on the diffusive attenuation coefficient at 490 nm and the third one ([Kd(AVE)]1-1) is just an average of [Kd(PAR)]1-1 and [Kd(PAR)]2-1. [Kd(PAR)]2-1 is larger than [Kd(PAR)]1-1 almost everywhere in the tropical oceans. Our results show that the OGCM with [Kd(PAR)]2-1 produces warmer sea surface temperature (SST) in the eastern equatorial Pacific and Atlantic and leads to reduce a cold bias in the equatorial cold tongue regions. It has warmer subsurface temperatures in the low latitude, a slower meridional velocity and Pacific equatorial undercurrent (EUC) than the model with [Kd(PAR)]1-1. These results are similar to previous studies, although we use a different model and different methods. This study has further analysis and firstly reveals that slower EUC and meridional velocity in the model with [Kd(PAR)]2-1 are mainly related to the changes of the acceleration due to zonal density gradient. This acceleration driving the EUC eastward in the subsurface becomes smaller in the subsurface along the equatorial Pacific. However, near the sea surface, the zonally averaged accelerations over the different ocean basins are larger in the model with [Kd(PAR)]2-1 than that with [Kd(PAR)]1-1, which pushes back the poleward meridional transport. The interannual variability in the model with [Kd(PAR)]2-1 is generally weaker than that in the experiment with [Kd(PAR)]1-1 due to a deeper mixed layer depth. The vertical temperature errors averaged horizontally within the domain of 30°S to 30°N in the experiment with [Kd(AVE)]1-1 are almost in the middle of errors of the other two experiments. This indicates that the effect of the SWAD on the simulation of the vertical temperature profile is largely linear

    An Assessment of Southern Ocean Water Masses and Sea Ice During 1988-2007 in a Suite of Interannual CORE-II Simulations

    No full text
    We characterise the representation of the Southern Ocean water mass structure and sea ice within a suite of 15 global ocean-ice models run with the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) protocol. The main focus is the representation of the present (1988-2007) mode and intermediate waters, thus framing an analysis of winter and summer mixed layer depths; temperature, salinity, and potential vorticity structure; and temporal variability of sea ice distributions. We also consider the interannual variability over the same 20 year period. Comparisons are made between models as well as to observation-based analyses where available. The CORE-II models exhibit several biases relative to Southern Ocean observations, including an underestimation of the model mean mixed layer depths of mode and intermediate water masses in March (associated with greater ocean surface heat gain), and an overestimation in September (associated with greater high latitude ocean heat loss and a more northward winter sea-ice extent). In addition, the models have cold and fresh/warm and salty water column biases centred near 50 deg S. Over the 1988-2007 period, the CORE-II models consistently simulate spatially variable trends in sea-ice concentration, surface freshwater fluxes, mixed layer depths, and 200-700 m ocean heat content. In particular, sea-ice coverage around most of the Antarctic continental shelf is reduced, leading to a cooling and freshening of the near surface waters. The shoaling of the mixed layer is associated with increased surface buoyancy gain, except in the Pacific where sea ice is also influential. The models are in disagreement, despite the common CORE-II atmospheric state, in their spatial pattern of the 20-year trends in the mixed layer depth and sea-ice
    corecore