21 research outputs found

    Role of Sulfhydryl Sites on Bacterial Cell Walls in the Biosorption, Mobility and Bioavailability of Mercury and Uranium

    Get PDF
    The goal of this exploratory study is to provide a quantitative and mechanistic understanding of the impact of bacterial sulfhydryl groups on the bacterial uptake, speciation, methylation and bioavailability of Hg and redox changes of uranium. The relative concentration and reactivity of different functional groups present on bacterial surfaces will be determined, enabling quantitative predictions of the role of biosorption of Hg under the physicochemical conditions found at contaminated DOE sites.The hypotheses we propose to test in this investigation are as follows- 1) Sulfhydryl groups on bacterial cell surfaces modify Hg speciation and solubility, and play an important role, specifically in the sub-micromolar concentration ranges of metals in the natural and contaminated systems. 2) Sulfhydryl binding of Hg on bacterial surfaces significantly influences Hg transport into the cell and the methylation rates by the bacteria. 3) Sulfhydryls on cell membranes can interact with hexavalent uranium and convert to insoluble tetravalent species. 4) Bacterial sulfhydryl surface groups are inducible by the presence of metals during cell growth. Our studies focused on the first hypothesis, and we examined the nature of sulfhydryl sites on three representative bacterial species: Bacillus subtilis, a common gram-positive aerobic soil species; Shewanella oneidensis, a facultative gram-negative surface water species; and Geobacter sulfurreducens, an anaerobic iron-reducing gram-negative species that is capable of Hg methylation; and at a range of Hg concentration (and Hg:bacterial concentration ratio) in which these sites become important. A summary of our findings is as follows- Hg adsorbs more extensively to bacteria than other metals. Hg adsorption also varies strongly with pH and chloride concentration, with maximum adsorption occurring under circumneutral pH conditions for both Cl-bearing and Cl-free systems. Under these conditions, all bacterial species tested exhibit almost complete removal of Hg from the experimental solutions at relatively low bacterial concentrations. Synchrotron based X-ray spectroscopic studies of these samples indicate that the structure and the coordination environment of Hg surface complexes on bacterial cell walls change dramatically- with sulfhydryls as the dominant Hg-binding groups in the micromolar and submicromolar range, and carboxyls and phosphoryls dominating at high micromolar concentrations. Hg interactions change from a trigonal or T-shaped HgS{sub 3} complex to HgS or HgS{sub 2} type complexes as the Hg concentration increases in the submicromolar range. Although all bacterial species studied exhibited the same types of coordination environments for Hg, the relative concentrations of the complexes change as a function of Hg concentration

    The role of nanopores on U(VI) sorption and redox behavior in U(VI)-contaminated subsurface sediments

    Get PDF
    Most reactive surfaces in clay-dominated sediments are present within nanopores (pores of nm dimension). The behavior of geological fluids and minerals in nanopores is significantly different from those in normal non-nanoporous environments. The effect of nanopore surfaces on U(VI) sorption/desorption and reduction is likely to be significant in clay-rich subsurface environments. Our research results from both model nanopore system and natural sediments from both model system (synthetic nanopore alumina) and sediments from the ORNL Field Research Center prove that U(VI) sorption on nanopore surfaces can be greatly enhanced by nanopore confinement environments. The results from the project provide advanced mechanistic, quantitative information on the physiochemical controls on uranium sorption and redox behavior in subsurface sediments. The influence of nanopore surfaces on coupled uranium sorption/desorption and reduction processes is significant in virtually all subsurface environments, because most reactive surfaces are in fact nanopore surfaces. The results will enhance transfer of our laboratory-based research to a major field research initiative where reductive uranium immobilization is being investigated. Our results will also provide the basic science for developing in-situ colloidal barrier of nanoporous alumina in support of environmental remediation and long term stewardship of DOE sites

    Spectroscopic and computational insights on catalytic synergy in bimetallic aluminophosphate catalysts

    No full text
    A combined electronic structure computational and X-ray absorption spectroscopy study was used to investigate the nature of the active sites responsible for catalytic synergy in Co-Ti bimetallic nanoporous frameworks. Probing the nature of the molecular species at the atomic level has led to the identification of a unique Co-O-Ti bond, which serves as the loci for the superior performance of the bimetallic catalyst, when compared with its analogous monometallic counterpart. The structural and spectroscopic features associated with this active site have been characterized and contrasted, with a view to affording structure property relationships, in the wider context of designing sustainable catalytic oxidations with porous solids

    Stable U(IV) Complexes Form at High-Affinity Mineral Surface Sites

    Get PDF
    Uranium (U) poses a significant contamination hazard to soils, sediments, and groundwater due to its extensive use for energy production. Despite advances in modeling the risks of this toxic and radioactive element, lack of information about the mechanisms controlling U transport hinders further improvements, particularly in reducing environments where UIV predominates. Here we establish that mineral surfaces can stabilize the majority of U as adsorbed UIV species following reduction of UVI. Using X-ray absorption spectroscopy and electron imaging analysis, we find that at low surface loading, UIV forms inner-sphere complexes with two metal oxides, TiO2 (rutile) and Fe3O4 (magnetite) (at <1.3 U nm–2 and <0.037 U nm–2, respectively). The uraninite (UO2) form of UIV predominates only at higher surface loading. UIV–TiO2 complexes remain stable for at least 12 months, and UIV–Fe3O4 complexes remain stable for at least 4 months, under anoxic conditions. Adsorbed UIV results from UVI reduction by FeII or by the reduced electron shuttle AH2QDS, suggesting that both abiotic and biotic reduction pathways can produce stable UIV–mineral complexes in the subsurface. The observed control of high-affinity mineral surface sites on UIV speciation helps explain the presence of nonuraninite UIV in sediments and has important implications for U transport modeling

    A systematic review of social network sentiment analysis with comparative study of ensemble-based techniques

    No full text
    Sentiment Analysis (SA) of text reviews is an emerging concern in Natural Language Processing (NLP). It is a broadly active method for analyzing and extracting opinions from text using individual or ensemble learning techniques. This field has unquestionable potential in the digital world and social media platforms. Therefore, we present a systematic survey that organizes and describes the current scenario of the SA and provides a structured overview of proposed approaches from traditional to advance. This work also discusses the SA-related challenges, feature engineering techniques, benchmark datasets, popular publication platforms, and best algorithms to advance the automatic SA. Furthermore, a comparative study has been conducted to assess the performance of bagging and boosting-based ensemble techniques for social network SA. Bagging and Boosting are two major approaches of ensemble learning that contain various ensemble algorithms to classify sentiment polarity. Recent studies recommend that ensemble learning techniques have the potential of applicability for sentiment classification. This analytical study examines the bagging and boosting-based ensemble techniques on four benchmark datasets to provide extensive knowledge regarding ensemble techniques for SA. The efficiency and accuracy of these techniques have been measured in terms of TPR, FPR, Weighted F-Score, Weighted Precision, Weighted Recall, Accuracy, ROC-AUC curve, and Run-Time. Moreover, comparative results reveal that bagging-based ensemble techniques outperformed boosting-based techniques for text classification. This extensive review aims to present benchmark information regarding social network SA that will be helpful for future research in this field

    Intracellular Hg(0) Oxidation in <i>Desulfovibrio desulfuricans</i> ND132

    No full text
    The disposal of elemental mercury (Hg(0)) wastes in mining and manufacturing areas has caused serious soil and groundwater contamination issues. Under anoxic conditions, certain anaerobic bacteria can oxidize dissolved elemental mercury and convert the oxidized Hg to neurotoxic methylmercury. In this study, we conducted experiments with the Hg-methylating bacterium <i>Desulfovibrio desulfuricans</i> ND132 to elucidate the role of cellular thiols in anaerobic Hg(0) oxidation. The concentrations of cell-surface and intracellular thiols were measured, and specific fractions of <i>D. desulfuricans</i> ND132 were examined for Hg(0) oxidation activity and analyzed with extended X-ray absorption fine structure (EXAFS) spectroscopy. The experimental data indicate that intracellular thiol concentrations are approximately six times higher than those of the cell wall. Cells reacted with a thiol-blocking reagent were severely impaired in Hg(0) oxidation activity. Spheroplasts lacking cell walls rapidly oxidized Hg(0) to Hg­(II), while cell wall fragments exhibited low reactivity toward Hg(0). EXAFS analysis of spheroplast samples revealed that multiple different forms of Hg-thiols are produced by the Hg(0) oxidation reaction and that the local coordination environment of the oxidized Hg changes with reaction time. The results of this study indicate that Hg(0) oxidation in <i>D. desulfuricans</i> ND132 is an intracellular process that occurs by reaction with thiol-containing molecules
    corecore