7,100 research outputs found
Unzipping DNA by force: thermodynamics and finite size behaviour
We discuss the thermodynamic behaviour near the force induced unzipping
transition of a double stranded DNA in two different ensembles. The Y-fork is
identified as the coexisting phases in the fixed distance ensemble. From finite
size scaling of thermodynamic quantities like the extensibility, the length of
the unzipped segment of a Y-fork, the phase diagram can be recovered. We
suggest that such procedures could be used to obtain the thermodynamic phase
diagram from experiments on finite length DNA.Comment: 10 pages, accepted for publication in special issue of Journal of
Physics: Condensed Matte
Helicase activity on DNA as a propagating front
We develop a propagating front analysis, in terms of a local probability of
zipping, for the helicase activity of opening up a double stranded DNA (dsDNA).
In a fixed-distance ensemble (conjugate to the fixed-force ensemble) the front
separates the zipped and unzipped phases of a dsDNA and a drive acts locally
around the front. Bounds from variational analysis and numerical estimates for
the speed of a helicase are obtained. Different types of helicase behaviours
can be distinguished by the nature of the drive.Comment: 5 pages, 5 eps figures; replaced by the published versio
DNA sequence from the unzipping force? : one mutation problem
The possibility of detecting mutations in a DNA from force measurements (as a
first step towards sequence analysis) is discussed theoretically based on exact
calculations. The force signal is associated with the domain wall separating
the zipped from the unzipped regions. We propose a comparison method
(``differential force microscope'') to detect mutations. Two lattice models are
treated as specific examples.Comment: 11 pages, 4 figures. Revised version with minor changes. Paragraph
with discussion on experiments added. Accepted for publication in J. Phys. A
as a Letter to the Edito
Manipulating a single adsorbed DNA for a critical endpoint
We show the existence of a critical endpoint in the phase diagram of
unzipping of an adsorbed double-stranded (ds) polymer like DNA. The competition
of base pairing, adsorption and stretching by an external force leads to the
critical end point. From exact results, the location of the critical end point
is determined and its classical nature established.Comment: 6 pages, 5 figures, Published versio
Comment on " A simple model for DNA denaturation"
The replacment of mutual avoidance of polymers by a long-range interaction of
the type proposed by Garel etal (Europhys. Lett. 55, 132 (2001),
cond-mat/0101058) is inconsistent with the prevalent renormalization group
arguments.Comment: 2 pages, Comment on Garel etal. Europhys. Lett 55, 132(2001)
cond-mat/0101058. Appeared in Europhys Let
A Measure of data-collapse for scaling
Data-collapse is a way of establishing scaling and extracting associated
exponents in problems showing self-similar or self-affine characteristics as
e.g. in equilibrium or non-equilibrium phase transitions, in critical phases,
in dynamics of complex systems and many others. We propose a measure to
quantify the nature of data collapse. Via a minimization of this measure, the
exponents and their error-bars can be obtained. The procedure is illustrated by
considering finite-size-scaling near phase transitions and quite strikingly
recovering the exact exponents.Comment: 3 pages, revtex, 3 figures,2 in colour. Replaced by the proper
version - slightly longer and no mismatch of abstrac
Helicase on DNA: A Phase coexistence based mechanism
We propose a phase coexistence based mechanism for activity of helicases,
ubiquitous enzymes that unwind double stranded DNA. The helicase-DNA complex
constitutes a fixed-stretch ensemble that entails a coexistence of domains of
zipped and unzipped phases of DNA, separated by a domain wall. The motor action
of the helicase leads to a change in the position of the fixed constraint
thereby shifting the domain wall on dsDNA. We associate this off-equilibrium
domain wall motion with the unzipping activity of helicase. We show that this
proposal gives a clear and consistent explanation of the main observed features
of helicases.Comment: Revtex4. 5 pages. 4 figures. Published versio
Reunion of Vicious Walkers: Results from -Expansion -
The anomalous exponent, , for the decay of the reunion probability
of vicious walkers, each of length , in dimensions,
is shown to come from the multiplicative renormalization constant of a
directed polymer partition function. Using renormalization group(RG) we
evaluate to . The survival probability exponent is
. For , our RG is exact and stops at .
For , the log corrections are also determined. The number of walkers that
are sure to reunite is 2 and has no expansion.Comment: No of pages: 11, 1figure on request, Revtex3,IP/BBSR/929
Dynamics of unbinding of polymers in a random medium
We have studied the aging effect on the dynamics of unbinding of a double
stranded directed polymer in a random medium. By using the Monte Carlo dynamics
of a lattice model in two dimensions, for which disorder is known to be
relevant, the unbinding dynamics is studied by allowing the bound polymer to
relax in the random medium for a waiting time and then allowing the two strands
to unbind. The subsequent dynamics is formulated in terms of the overlap of the
two strands and also the overlap of each polymer with the configuration at the
start of the unbinding process. The interrelations between the two and the
nature of the dependence on the waiting time are studied.Comment: 7 pages, latex, 3 figures, To appear in J. Chem. Phy
Dynamic phase transition in the conversion of B-DNA to Z-DNA
The long time dynamics of the conformational transition from B-DNA to Z-DNA
is shown to undergo a dynamic phase transition. We obtained the dynamic phase
diagram for the stability of the front separating B and Z. The instability in
this front results in two split fronts moving with different velocities. Hence,
depending on the system parameters a denatured state may develop dynamically
eventhough it is thermodynamically forbidden. This resolves the current
controversies on the transition mechanism of the B-DNA to Z-DNA.Comment: 5 pages, 4 figures. New version with correction of typos, new
references, minor modifications in Fig 2, 3. To appear in EP
- âŠ