23 research outputs found

    Sub-band level-assisted photoconduction in epitaxial BiFeO3 films

    Get PDF
    Sub-band level assisted conduction mechanisms are well known in the field of semiconducting materials. In this work, we explicitly show the validity of such a mechanism in the multiferrroic material BiFeO3 (BFO). Our study is based on two different systems of epitaxial thin films of BFO, relaxed and strained. By analyzing the spectral distribution of the photoresponse from both the systems, the role of the sub-band levels in the photoconductive phenomena becomes evident. Additionally, the influence of epitaxial strain on the trapping activity of these levels is also observed. A model is proposed by taking into account the reversal of the role of a sub-band gap level, i.e., from a trapping to a ground state

    Study on fungicidal effect of plant extracts on plant pathogenic fungi and the economy of extract preparation and efficacy in comparison to synthetic/chemical fungicides

    Get PDF
    Providing food security to devastatingly increasing population with limited natural resources along with destruction caused by pre- and post-harvest pathogens are the foremost concerns for the developing countries. Numerous pesticides, herbicides and chemical fertilizers are being applied by the farmers to deal with the existing situation but leave very disastrous and undesirable after effects on ecosystem as non-degradable molecules.. Botanicals can be utilized as an ecofriendly and effective alternative against chemical as they are of natural origin. In this context, two chemical/synthetic fungicides namely Manzate and Nystanin in three different concentrations namely 500ppm, 1000 ppm and 1500 ppm were evaluated against Sclerotium rolfsii, Alternaria alternata, Fusarium monilifrome, Rhizoctonia solani and Aspergillus niger in vitro to compare them with ethanolic botanical extracts of spices (clove, cinnamon, thyme) and weeds (parthenium and calotropis) at 5%, 10%, 15%, 20% and 25%. Results revealed the high efficacy of botanicals i.e. clove extracts showed maximum inhibition (100%), followed by reduced inhibition in cinnamon, thyme, Parthenium and Calotropis treated plates against all five pathogens even at 5% concentration in comparison to chemical of 500 ppm concentration i.e. 100% in case of S.rolfsii only. Hence the herbal products can be further analyzed and applied as a potent, ecofriendly and economical substitute to chemicals

    A Cubic-regularized Policy Newton Algorithm for Reinforcement Learning

    Full text link
    We consider the problem of control in the setting of reinforcement learning (RL), where model information is not available. Policy gradient algorithms are a popular solution approach for this problem and are usually shown to converge to a stationary point of the value function. In this paper, we propose two policy Newton algorithms that incorporate cubic regularization. Both algorithms employ the likelihood ratio method to form estimates of the gradient and Hessian of the value function using sample trajectories. The first algorithm requires an exact solution of the cubic regularized problem in each iteration, while the second algorithm employs an efficient gradient descent-based approximation to the cubic regularized problem. We establish convergence of our proposed algorithms to a second-order stationary point (SOSP) of the value function, which results in the avoidance of traps in the form of saddle points. In particular, the sample complexity of our algorithms to find an ϵ\epsilon-SOSP is O(ϵ−3.5)O(\epsilon^{-3.5}), which is an improvement over the state-of-the-art sample complexity of O(ϵ−4.5)O(\epsilon^{-4.5})

    Strongly enhanced and tunable photovoltaic effect in ferroelectric-paraelectric superlattices

    Get PDF
    Ever since the first observation of a photovoltaic effect in ferroelectric BaTiO3, studies have been devoted to analyze this effect, but only a few attempted to engineer an enhancement. In conjunction, the steep progress in thin-film fabrication has opened up a plethora of previously unexplored avenues to tune and enhance material properties via growth in the form of superlattices. In this work, we present a strategy wherein sandwiching a ferroelectric BaTiO3 in between paraelectric SrTiO3 and CaTiO3 in a superlattice form results in a strong and tunable enhancement in photocurrent. Comparison with BaTiO3 of similar thickness shows the photocurrent in the superlattice is 103 times higher, despite a nearly two-thirds reduction in the volume of BaTiO3. The enhancement can be tuned by the periodicity of the superlattice, and persists under 1.5 AM irradiation. Systematic investigations highlight the critical role of large dielectric permittivity and lowered bandgap

    Sub-band level-assisted photoconduction in epitaxial BiFeO 3

    Get PDF
    Sub-band level assisted conduction mechanisms are well known in the field of semiconducting materials. In this work, we explicitly show the validity of such a mechanism in the multiferrroic material BiFeO3 (BFO). Our study is based on two different systems of epitaxial thin films of BFO, relaxed and strained. By analyzing the spectral distribution of the photoresponse from both the systems, the role of the sub-band levels in the photoconductive phenomena becomes evident. Additionally, the influence of epitaxial strain on the trapping activity of these levels is also observed. A model is proposed by taking into account the reversal of the role of a sub-band gap level, i.e., from a trapping to a ground state

    Surface passivation of semiconducting oxides by self-assembled nanoparticles

    Get PDF
    Physiochemical interactions which occur at the surfaces of oxide materials can significantly impair their performance in many device applications. As a result, surface passivation of oxide materials has been attempted via several deposition methods and with a number of different inert materials. Here, we demonstrate a novel approach to passivate the surface of a versatile semiconducting oxide, zinc oxide (ZnO), evoking a self-assembly methodology. This is achieved via thermodynamic phase transformation, to passivate the surface of ZnO thin films with BeO nanoparticles. Our unique approach involves the use of BexZn1-xO (BZO) alloy as a starting material that ultimately yields the required coverage of secondary phase BeO nanoparticles, and prevents thermally-induced lattice dissociation and defect-mediated chemisorption, which are undesirable features observed at the surface of undoped ZnO. This approach to surface passivation will allow the use of semiconducting oxides in a variety of different electronic applications, while maintaining the inherent properties of the materials

    Persistent photoconductivity in strained epitaxial BiFeO3 thin films

    Get PDF
    A drastic change in the conductivity of strained BiFeO3 (BFO) films is observed after illuminating them with above-band gap light. This has been termed as persistent photoconductivity. The enhanced conductivity decays exponentially with time. A trapping character of the sub-band levels and their subsequent gradual emptying is proposed as a possible mechanism

    Enhancement of local photovoltaic current at ferroelectric domain walls in BiFeO3

    Get PDF
    Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors

    Comparison of Two Different Non-Radiographic Mixed Dentition Analysis

    No full text
    Objective:To evaluate the applicability of two different non-radiographic mixed dentition analysis in school going children of Aligarh district, India. Material and Methods:Mesiodistal dimension was measured on the dental casts of 120 school going children with electronic digital vernier caliper. The following inclusion criteria were adopted: presence of all fully erupted permanent teeth; no congenital craniofacial anomalies; no previous history of orthodontic treatment; and presence of intact dentition with no proximal caries, restoration, or age related attrition. Predicted values of canines and premolars were obtained from Moyer’s at 75th percentile and Tanaka and Johnston mixed dentition analysis. Descriptive statistics were used to calculate the mean and standard deviation. Paired observations were compared by t‑test. The level of significance was at p<0.001. Results:The mean difference between the predicted and the actual value of canines and premolars using Moyer’s probability table at 75th percentile and Tanaka and Johnston regression equation were statistically significant. No significant differences were found between Moyer’s analysis 75th percentile and Tanaka and Johnston mixed dentition analysis in both arch and sexes. Conclusion:These two non-radiographic mixed dentition analysis overestimated the mesiodistal width of canines and premolars

    Microstructure of highly strained BiFeO3 thin films : transmission electron microscopy and electron-energy loss spectroscopy studies

    No full text
    Microstructure and electronic structure of highly strained bismuth ferrite (BiFeO3) thin films grown on lanthanum aluminate substrates are studied using high-resolution transmission and scanning transmission electron microscopies and electron energy loss spectroscopy (EELS). Monoclinic and tetragonal phases were observed in films grown at different temperatures, and a mix of both phases was detected in a film grown at intermediate temperature. In this film, a smooth transition of the microstructure was found between the monoclinic and the tetragonal phases. A considerable increase in the c-axis parameters was observed in both phases compared with the rhombohedral bulk phase. The off-center displacement of iron (Fe) ions was increased in the monoclinic phase as compared with the tetragonal phase. EEL spectra show different electronic structures in the monoclinic and the tetragonal phases. These experimental observations are well consistent with the results of theoretical first-principle calculations performed
    corecore