1,284 research outputs found

    Pulsed and continuous wave solid phase laser annealing of electrodeposited CuInSe2 thin films

    Get PDF
    pre-printCu(In,Ga)Se2 (CIGS) thin film photovoltaic absorber layers are primarily synthesized by vacuum based techniques at industrial scale. In this work, we investigate non-vacuum film synthesis by electrochemical deposition coupled with pulsed laser annealing (PLA) and or continuous wave laser annealing (CWLA) using 1064 nm laser. PLA results indicate that at high fluence (≥100 mJ/cm2) CuInSe2 films melt and dewet on both Mo and Cu substrates. In the submelt PLA regime (≤70 mJ/cm2) no change in XRD results is recorded. However CWLA at 50 W/cm2 for up to 45 s does not result in melting or dewetting of the film. XRD and Raman data indicate more than 80% reduction in full width at half maximum (FWHM) in their respective main peaks for annealing time of 15 s or more. No other secondary phases are observed in XRD or Raman spectrum. These results might help us in setting up the foundation for processing CIGS through an entirely non-vacuum process

    Pulsed laser processing of electrodeposited CuInSe2 photovoltaic absorber thin films

    Get PDF
    Journal ArticleIn this report we investigate the effects of pulsed laser annealing (PLA) on both as-electrodeposited (ED) and electrodeposited-furnace annealed (EDA) CuInSe2 (CIS) samples by varying the laser fluence (J/cm2) and number of pulses. Results for as-ED samples indicate that liquid CIS-phase formation during PLA with 248 nm laser is to be avoided as liquid CIS dewets on Mo [1] as well as MoSe2. In the case of EDA-PLA samples, scanning electron microscopy (SEM) images suggest no apparent change in surface morphology but photoluminescence (PL) indicates change in PL yield and FWHM after PLA processing, a possible indication of annealing of defect states. The effects of PLA on defects are further explored using deep level transient spectroscopy (DLTS)

    Fault-tolerant quantum computation with cluster states

    Get PDF
    The one-way quantum computing model introduced by Raussendorf and Briegel [Phys. Rev. Lett. 86 (22), 5188-5191 (2001)] shows that it is possible to quantum compute using only a fixed entangled resource known as a cluster state, and adaptive single-qubit measurements. This model is the basis for several practical proposals for quantum computation, including a promising proposal for optical quantum computation based on cluster states [M. A. Nielsen, arXiv:quant-ph/0402005, accepted to appear in Phys. Rev. Lett.]. A significant open question is whether such proposals are scalable in the presence of physically realistic noise. In this paper we prove two threshold theorems which show that scalable fault-tolerant quantum computation may be achieved in implementations based on cluster states, provided the noise in the implementations is below some constant threshold value. Our first threshold theorem applies to a class of implementations in which entangling gates are applied deterministically, but with a small amount of noise. We expect this threshold to be applicable in a wide variety of physical systems. Our second threshold theorem is specifically adapted to proposals such as the optical cluster-state proposal, in which non-deterministic entangling gates are used. A critical technical component of our proofs is two powerful theorems which relate the properties of noisy unitary operations restricted to act on a subspace of state space to extensions of those operations acting on the entire state space.Comment: 31 pages, 54 figure

    Ascorbic acid enhances the inhibitory effect of aspirin on neuronal cyclooxygenase-2-mediated prostaglandin E2 production.

    Get PDF
    Inhibition of neuronal cyclooxygenase-2 (COX-2) and hence prostaglandin E2 (PGE2) synthesis by non-steroidal anti-inflammatory drugs has been suggested to protect neuronal cells in a variety of pathophysiological situations including Alzheimer's disease and ischemic stroke. Ascorbic acid (vitamin C) has also been shown to protect cerebral tissue in a variety of experimental conditions, which has been attributed to its antioxidant capacity. In the present study, we show that ascorbic acid dose-dependently inhibited interleukin-1beta (IL-1beta)-mediated PGE2 synthesis in the human neuronal cell line, SK-N-SH. Furthermore, in combination with aspirin, ascorbic acid augmented the inhibitory effect of aspirin on PGE2 synthesis. However, ascorbic acid had no synergistic effect along with other COX inhibitors (SC-58125 and indomethacin). The inhibition of IL-1beta-mediated PGE2 synthesis by ascorbic acid was not due to the inhibition of the expression of COX-2 or microsomal prostaglandin E synthase (mPGES-1). Rather, ascorbic acid dose-dependently (0.1-100 microM) produced a significant reduction in IL-1beta-mediated production of 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha), a reliable indicator of free radical formation, suggesting that the effects of ascorbic acid on COX-2-mediated PGE2 biosynthesis may be the result of the maintenance of the neuronal redox status since COX activity is known to be enhanced by oxidative stress. Our results provide in vitro evidence that the neuroprotective effects of ascorbic acid may depend, at least in part, on its ability to reduce neuronal COX-2 activity and PGE2 synthesis, owing to its antioxidant properties. Further, these experiments suggest that a combination of aspirin with ascorbic acid constitutes a novel approach to render COX-2 more sensitive to inhibition by aspirin, allowing an anti-inflammatory therapy with lower doses of aspirin, thereby avoiding the side effects of the usually high dose aspirin treatment

    Disruption of the MyoD/p21 Pathway in Rhabdomyosarcoma

    Get PDF
    Purpose. Rhabdomyosarcoma (RMS) is an embryonal tumor thought to arise from skeletal muscle cells that fail to differentiate terminally. The majority of RMSs express MyoD, a protein essential to the differentiation of skeletal muscle. It was recently shown that during myogenesis, MyoD activates the expression of the cyclin-dependent kinase inhibitor (CDKi), p21, which itself plays a critical role in normal muscle development. To investigate the integrity of the MyoD/p21 pathway in RMS, we analyzed p21 and its relationship to MyoD expression in RMS

    Magnetically Actuated Protease Sensors for in Vivo Tumor Profiling

    Get PDF
    Targeted cancer therapies require a precise determination of the underlying biological processes driving tumorigenesis within the complex tumor microenvironment. Therefore, new diagnostic tools that capture the molecular activity at the disease site in vivo are needed to better understand tumor behavior and ultimately maximize therapeutic responses. Matrix metalloproteinases (MMPs) drive multiple aspects of tumorigenesis, and their activity can be monitored using engineered peptide substrates as protease-specific probes. To identify tumor specific activity profiles, local sampling of the tumor microenvironment is necessary, such as through remote control of probes, which are only activated at the tumor site. Alternating magnetic fields (AMFs) provide an attractive option to remotely apply local triggering signals because they penetrate deep into the body and are not likely to interfere with biological processes due to the weak magnetic properties of tissue. Here, we report the design and evaluation of a protease-activity nanosensor that can be remotely activated at the site of disease via an AMF at 515 kHz and 15 kA/m. Our nanosensor was composed of thermosensitive liposomes containing functionalized protease substrates that were unveiled at the target site by remotely triggered heat dissipation of coencapsulated magnetic nanoparticles (MNPs). This nanosensor was combined with a unique detection assay to quantify the amount of cleaved substrates in the urine. We applied this spatiotemporally controlled system to determine tumor protease activity in vivo and identified differences in substrate cleavage profiles between two mouse models of human colorectal cancer.National Cancer Institute (U.S.) (Grant P30-CA14051)National Institute of Environmental Health Sciences (Grant P30-ES002109)United States. Defense Advanced Research Projects Agency (Award HR0011-15-C-0155

    CXCL12 retargeting of an adenovirus vector to cancer cells using a bispecific adapter

    Get PDF
    Ad vectors are promising delivery vehicles for cancer therapeutic interventions. However, their application is limited by promiscuous tissue tropism and hepatotoxicity. This limitation can be avoided by altering the native tropism of Ads so that they can be redirected to the target cells through alternate cellular receptors. The CXCR4 chemokine receptor belongs to a large superfamily of G-protein-coupled receptors and is known to be upregulated in a wide variety of cancers, including breast cancer and melanoma. These receptors have been associated with cancer cell survival, progression, and metastasis. In the current study, an Ad to cancer cells overexpressing CXCR4 by using a bispecific adapter, sCAR-CXCL12, was retargeted. The sCAR-CXCL12 adapter contained the soluble ectodomain form of the native Ad5 receptor (sCAR), which was fused to a mature human chemokine ligand, CXCL12, through a short peptide linker. A dramatic increase in the infectivity of cancer cells using a targeted Ad vector compared with an untargeted vector was observed. Furthermore, sCAR-CXCL12 attenuated Ad infection of liver ex vivo and in vivo and enhanced Ad vector infection of xenograft tumors implanted in immunodeficient SCID-bg mice. Thus, the sCAR-CXCL12 adapter could be used to retarget Ad vectors to chemokine receptor-positive tumors
    • …
    corecore